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Abstract

As a promising computing architecture, fog computing has attracted lots of atten-

tion from industry and research communities in recent years. With the huge number

of heterogeneous and distributed devices performing computational and storage tasks

between the cloud and users, fog computing can be an answer to the surging challenges

in today’s networks. However, due to the decentralized and heterogeneous nature of

fog networks, planning a fog network can be a complicated and challenging task. To

our best knowledge, little work has been done on the planning and designing of fog

computing networks. To deal with this problem, we first propose a multi-objective

mathematical model that simultaneously deals with the fog node placement, fog node

dimensioning and demand routing. The model optimizes the tradeo↵ front (Pareto

front) between capital expenditure and network delay in dual objective functions.

Then, we analyze the performance of an exact algorithm (branch and bound) and

two evolutionary algorithms (genetic algorithm and particle swarm algorithm) on

this problem, showing that the evolutionary algorithms o↵er a good balance between

the Pareto optimality and computation time e�ciency. Inspired by the existing evo-

lutionary algorithms, we proposed a new evolutionary algorithm, named PSONSGA,

which combines the convergence e�ciency from NSGA-II and the searching e�ciency

from SMPSO. The results demonstrate that the evolutionary algorithms are highly

e�cient compared to the exact algorithm. Among the three evolutionary algorithms,

the algorithm we proposed (PSONSGA) gives the best Pareto front solutions which

shows the good convergence to the true optimal front and the evenly distribution

character. The proposed algorithm can be a valuable planning tool for real-world fog

network planning.
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Chapter 1

Introduction

Cloud computing has been dominating the Information Technology (IT) industry

for several years. As a computing model, cloud computing enables convenient, on-

demand network access to a shared pool of computing resources. This centralized

computing model has been used as an e�cient way to process data and deploy business

services. However, the rapid evolution in the fields of mobile applications and wearable

devices imposes stringent delay and reliability requirements in today’s cloud systems

[1]. In addition, the Internet of Things (IoT) introduces new challenges that cannot

be addressed by the current cloud system and could lead to serious issues in terms of

performance, reliability and security. For instance:

• Device Ubiquity Challenge: Cisco estimates that there will be 50 billion con-

nected devices by 2020 [2]. The tra�c and data generated by these new devices

will burden the backbone and access networks.

• Service/Network Management Challenge: Immersion in billions of devices can

be helpful to improve application procedures. Nonetheless, managing a network

of billions of heterogeneous devices would be complex and challenging.

• Connectivity Challenge: When there are billions of devices consuming and gen-

erating data at the edge of the network, the current network standards may fall

short [3]. Resource contention may happen on the networks due to the huge

amount of tra�c generated by these devices.

• Security Challenge: Information leaking across platforms and interfaces has

been the primary concern in cloud computing to date. Moreover, in some coun-

tries, regulations prevent organizations from storing their information in foreign

1
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locations.

In order to tackle these challenges, Cisco proposed the paradigm of fog computing

as a potential solution [2]. The idea of fog computing is to bring the computation,

communication, control and storage closer to the end-users; therefore, the data trans-

fer time and the amount of network transmissions will be greatly reduced. Typically,

the fog architecture can be described as shown in Figure 1.1. As can be seen, the fog

architecture is deployed as a large number of Micro-DataCenters (MDCs), which are

often distributed over a geographical region of interest. These fog nodes connect to

access networks and remote clouds to provide storage and computing services without

the intervention of third-parties [4].

The proximity o↵ered by fog networks addresses the challenges facing today’s

cloud centre, and enables low-latency applications such as augmented reality, gaming,

video streaming, etc.

Figure 1.1: Typical fog network architecture

However, planning fog networks can be a complicated task due to the following

reasons:

• Fog facilities need to be highly decentralized.
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• The fog architecture needs to take into account heteromerous hardware require-

ments.

• User demands need to be distributed across multiple facilities.

• The center cloud needs to be able to connect and cooperate with the fog facili-

ties.

With the di�culties mentioned above and the complexity of future networks, ser-

vice providers need e�cient planning tools to implement fog computing networks.

These e�cient network planning tools can help design optimal fog networks guaran-

teeing better service to the end users.

1.1 Problem Statement

The primary goal of the fog network planning is to generate an optimal fog network

design fulfilling the Quality of Service (QoS) requirements of latency-critical services

and IoT devices. Without loss of generality, it can be recognized that the fog nodes

will be the distributed fog facilities delivering computation, storage, and networking

services at the edge of the network. Considering the decentralized and heterogeneous

nature of the fog network combined with a vast number of edge devices, obtaining the

optimal network design can be challenging. In fact, several factors have to be taken

into consideration such as the decentralized resources, heterogeneous facilities, ubiq-

uitous IoT devices and so on. Essentially, the fog network planning problem can be

decomposed into three subproblems: the fog placement problem, the fog dimensioning

problem, and the demand routing problem.

• Fog placement is the process of selecting a subset of potential locations from a

given candidate set and placing fog facilities at these locations. The geographical

factors could significantly a↵ect the propagation delay in the fog network.

• Fog dimensioning is the process of selecting the capacity levels of fog devices

and links for each candidate site. This selection depends on the fog node price,

link price and demand requirements.

• Demand routing is the process of directing requests to an appropriate fog

node. This problem can be modelled as an assignment problem. Once the fog
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placement and dimensioning decisions are made, the assignment problem must

be solved to optimally direct requests. Since the location of the users will also

have an impact on the fog placement, all these three problems are dependent

on each other.

All these problems are of particular importance to the implementation of fog networks,

and have significant impacts on the fog network performance. The fog placement and

fog dimensioning problems correspond to the facility placement problem, while the

demand routing problem constitutes the resource allocation problem. Unfortunately,

each of these problems has already been proven to be NP-hard [5, 6].

Di↵erent approximation algorithms have been proposed to solve these optimiza-

tion problems. However, due to the complexity, most of them are problem dependent

and lacking flexibility to the real-world network planning. For example: the tra-

ditional Facility Location Problem (FLP) aims to determine the minimum capital

expense to achieve the specific network performance. Without a priori knowledge of

network objectives, it is di�cult to establish an appropriate service-level constraint.

Another classic problem, the K-median clustering, deals with minimizing the delay

parameter between the facility and clients. In real-world planning, however, with-

out an accurate estimation of K (number of fog nodes), the value of this model is

undermined.

On the other hand, from the operator point of view, the fundamental goal of the

fog network planning is to achieve the maximum network performance with minimum

investment. This can be targeted into two objectives:

• Minimizing the Capital Expenditure: Budget and monetary factors have

always been the major concerns for network designers. When implementing

a fog network, it is important to identify and attempt to minimize the total

capital expenditure such as the hardware purchasing, facility rental, link cost

and installation cost, etc.

• Minimizing the Delay: Delay is arguably the most important performance

parameter for most cloud services. A small increase in the user-perceived latency

can cause substantial revenue loss of the service provider [7]. Also, since the fog

is targeted for widely distributed IoT devices, an e↵ective fog network should

consider the latency requirements of the latency-critical IoT services.
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As we can see, the two objectives are conflicting with each other. For instance, to

minimize the network delay, a large number of fog nodes may need to be deployed,

thus increasing the capital expense. On the other hand, to minimize the capital

expense, only a small number of fog nodes may be selected. In this case, requests and

demands will not be fully served by the fog nodes and will have to be routed to the

distant cloud across the public network, thus degrading the network performance.

Optimizing two objectives that conflict with each other converts the problem into

a multi-objective optimization problem. The multi-objective optimization aims to

find the Pareto front which consists of a set of non-dominated trade-o↵ solutions.

The Pareto front gives network designers a chance to evaluate the pros and cons of

each of the trade-o↵ solutions, thus, leading to informed network planning decisions.

However, it is di�cult to choose an appropriate multi-objective approach due to the

inability to derive an analytical knowledge of the problem.

Di↵erent multi-objective algorithms have been proposed by previous researchers.

For example, the multi-objective fog planning problem can be solved by a linear com-

bination of di↵erent objective functions to form a single objective function (weighted

sum method) using a commercial solver such as cplex. However, it cannot be solved

within a reasonable amount of time due to the NP-hardness.

The multi-objective fog planning problem can be solved by the Evolutionary

Multi-objective Optimizations (EMOs) [8, 9]. Since EMOs are heuristic-based algo-

rithms, there is no guarantee in finding Pareto-optimal points [10]. However, EMOs

have e↵ective operators to evolve the solution points towards the optimal frontier. For

example, in [11], the EMO algorithm was proposed to solve the demand scheduling

problem, while in [12] the EMO was applied to solve the facility location problem.

Therefore, it is interesting to investigate how they perform on the fog network plan-

ning problem.

In conclusion, designing and planning fog networks is characterized by the com-

plexity of the fog placement, fog dimensioning, and demand routing whilst minimizing

the capital expenditure and network delay. Tackling these complexities, this the-

sis addresses the above mentioned problems and proposes exact and approximation

multi-objective algorithms for the fog network planning problem.
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1.2 Research Objectives

The main objective of this thesis is to develop e�cient planning tools to solve

the fog network planning problem. More precisely, we will achieve the following

objectives:

• Propose a mathematical model for the fog network planning problem, which

formulates the joint problem of fog placement, fog dimensioning, and demand

routing. The objectives of this model are to minimize the capital expenditure

and minimize the network delay.

• Solve the previous model using the weighted sum method. The optimal solution

points obtained will be used as a benchmark to compare the quality of various

approximation algorithms.

• Implement and evaluate two existing multi-objective evolutionary algorithms,

namely NSGA-II and SMPSO.

• Propose a new multi-objective evolutionary algorithm.

• Compare the performance of the previous four di↵erent approaches in terms

of multi-objective quality indicators, such as Hypervolume (HV) and Inverted

Generational Distance (IGD).

• Compare the performance of the three approximation algorithms with the op-

timal solution points obtained from the weighted sum method.

1.3 Methodology

This section explains the methodology that will be used to meet our research

objectives.

• Develop the mathematical model: To address the first objective (propose

a mathematical model for fog planning problem), we will first study the reasons

why the concept of fog computing was introduced and we will also look at

the fog infrastructure. Based on this information, we will define the objective

functions and derive a set of constraints that adequately represents the reality

of fog networks.
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• Solve the model using the exact algorithm: To address the second ob-

jective, the model from previous step will be used to solve the fog planning

problem. The weighted sum method will be applied to combine multi-objective

functions into single-objective function, then the single-objective function will

be solved by the commercial solver CPLEX.

• Solve the model using the existing EMOs: To address the third objective,

the fog planning problems will be solved by two prominent MOEAs (NSGA-II

and SMPSO). An encoding scheme will be designed to translate the fog planning

problem into evolutionary algorithms.

• Evaluate the MOEAs and propose a new MOEA: To address the fourth

objective, the NSGA-II and SMPSO will be evaluated in terms of convergence

and diversity. Motivated by the shortcomings in these two algorithms, we will

propose a new multi-objective algorithm (PSONSGA). The proposed MOEA

exploits the convergence and diversity quality in the genetic algorithm and the

particle swarm algorithm.

• Solution comparison in terms of the quality indicator: To address

the fifth objective, the Pareto front obtained from the weighted sum method,

NSGA-II, SMPSO and PSONSGA will be evaluate in terms of two multi-

objective quality indicators: HV and IGD. This will help us in determining

which method generates the best approximate Pareto front.

• Solution comparison in terms of the delay: To address the sixth objective,

the solution points obtained from CPLEX will be used to evaluate the quality

of the solutions obtained from the NSGA-II, SMPSO and PSONSGA. This

will help us in determining which approximation algorithm generates the best

solutions regarding to the delay parameter.

1.4 Thesis Outline

This thesis is structured as follows.

• Chapter 2 - Background & Related Work. We introduce the basic concepts of

the fog computing, network design process and multi-objective optimization.
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Then, we overview some related works to the fog network, distributed-cloud

planning, multi-cloud planning, and multi-objective optimization.

• Chapter 3 - Formulation of the Fog Planning Problem. This chapter defines

and formulates the fog planning problem using a multi-objective mathematical

model.

• Chapter 4 - Algorithms for Solving the Fog Planning Problem. This chapter

presents a comprehensive explanation of the multi-objective algorithms and

optimization procedures. The multi-objective algorithms include the weighted

sum method, NSGA-II algorithm, SMPSO algorithm and proposed PSONSGA

algorithm.

• Chapter 5 - Results and Analysis. This chapter presents the simulation results

for the four multi-objective algorithms, including the evaluation and comparison

in terms of the solution quality and computation time.

• Chapter 6 - Conclusion and Future Work. This chapter summarizes the research

results and proposes future research directions.



Chapter 2

Background & Related Work

Fog computing has recently been a subject of great interest. As an infrastruc-

ture extending the cloud service to the edge of the network, fog networks can ef-

fectively improve network performance. However, due to the decentralization and

geo-distribution of fog nodes, planning and designing a fog network is a challenging

task. Therefore, an e�cient network planning tool is necessary to design optimal fog

networks.

In this chapter, we present several important concepts related to fog computing,

network design process and multi-objective optimization. Then, we overview some

related works in the area of fog computing, distributed cloud and multi-cloud. Since

the fog planning problem is casted as an optimization problem, Section 2.2.4 and Sec-

tion 2.2.5 present respectively, the single-objective and multi-objective optimization

studies related to the fog planning problem.

2.1 Background

In this section, we first introduce some background of fog computing in Sec-

tion 2.1.1. Then, we give an overview of the network design process in Section 2.1.2.

In addition, Section 2.1.3 presents the fundamental concepts of Multi-Objective Op-

timization (MOO). Finally, Section 2.1.4 explains the basic procedures and optimiza-

tion processes in the Evolutionary Multi-objective Optimization (EMO).

9
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2.1.1 Fog Computing

A Fog Computing (FC) network is a geographically distributed platform, where

heterogeneous, ubiquitous and decentralized devices perform storage and processing

tasks at the edge of the network. A three-tier hierarchy, as shown in Figure 2.1,

demonstrates how fog nodes provide services for edge devices. In this platform, ap-

plications and workloads are run over a local fog network infrastructure instead of

connecting to the remote cloud. This closeness to end-users creates an automated

response to the challenges observed in the centralized cloud computing. For instance:

Figure 2.1: The fog multi-tier architecture [13]

Device Ubiquity Challenge: Fog networks can be deployed closer to edge devices

at or above the access network. Therefore, it makes latency-sensitive applications

possible. It is also possible to alleviate the tra�c burden through deploying caching

services in localized fogs [14], so that bulky data transfer can be sped up.

Service/Network Management Challenge: Fog technologies have been tested to

ease this complexity [15, 16] . For instance, hosting services in fog nodes has been

proved to be promising for auto-coordination of applications [15]. The asymp-

totic/declarative approach [16] can be applied at the fog level to achieve the service

level management.
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Connectivity Challenge: Fog networks can be beneficial to network and commu-

nication protocols, and o↵ers low resource consumption and failure resilience [17].

The data locality makes it possible to aggregate and preprocess the data before send-

ing; therefore, it avoids the potential congestion at the edge and boosts transmission

e�ciency.

Security Challenge: In fog networks, instead of sending data to centralized cloud-

centres, fog nodes keep the privacy data within the local network. This localized

manner keeps sensitive information secure from theft and vulnerability in today’s

cloud systems.

Although, FC has been deemed as an evolution of the current cloud model, it

is not meant to “replace” Cloud Computing (CC). FC fills the technology gaps by

supporting new services with its distributed computing, management, storage and

networking capability [4]. In order to achieve a better performance, it could be

installed between the cloud and the network edge, and between computing power and

ubiquitous Internet of Things (IoT) devices [18]. Fog and cloud complement each

other to form a service continuum between application and users.

From an Information and Communication Technologies (ICT) perspective, fog is

not constrained to a particular technological area. To be specific, fog is the integration

of a set of developed and mature technologies: cloud, sensor networks, peer-to-peer

networks, network virtualization functions and the configuration management [15].

Vaquero et al., in [15], presented a thoroughly study of linking all these technologies

together in the fog computing paradigm.

2.1.2 Network Design Process

Network design is a complex and iterative process. It includes the following steps

[19]:

Declare the network requirements: This process requires a complete infor-

mation of tra�c loads, tra�c types, and tra�c paths. Then, this information is used

to estimate the network capacity which in turn is used as the input to the next step.

Network design and planning: This process applies di↵erent design techniques

and algorithms to produce a network topology. The decision variables include link

and node placements, tra�c routing decisions, facility dimensioning, etc.

Performance analysis: Once the previous steps are done, a candidate network

solution is developed. In the performance analysis process, the candidate solution is
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analyzed, so that di↵erent performance metric such as cost, reliability, and delay can

be evaluated [19].

When these three steps are completed, the first design iteration is finished. Then

the entire process is repeated, either with revised input data or by using a new design

approach. The flowchart of this process is presented in Figure 2.2.

Figure 2.2: Overview of the network design process [19]

The essence of this iterative process is to provide optimal network planning

schemes [19]. Unfortunately, most real world design problems can not have a math-

ematical perspective to obtain the optimal network solution. The network designer

must use a form of trial and error to determine the best option. After investigating a

variety of designs, the designer can select the one that provides the best performance

at the lowest cost. The inability to derive an analytically perfect solution requires the

network designer to explore as many alternatives as possible [19]. The multi-objective

optimization we applied in this work is perfect for this job. The multi-objective op-

timization generates the trade-o↵ solution set in which all the solutions are optimal.

The richness of trade-o↵ solutions, also known as Pareto frontiers, gives a chance to

the decision maker to evaluate the pros and cons of each of these solutions based

on all technical/non-technical considerations. In other words, it provides a complete
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image of the whole objective space through the trade-o↵ solution results. Therefore,

in a multi-objective optimization, we put e↵ort on finding the optimal set of trade-o↵

solutions and take all the objectives into considerations.

2.1.3 Multi-Objective Optimization

As the name suggests, multi-objective optimization involves optimizing dual or

multiple objectives simultaneously. The problem becomes challenging when the ob-

jectives conflict with each other, that is, the optimal solution of an objective function

is di↵erent from that of the other. In other words, the solution has to compromise at

least one of the other objectives to improve in this objective. Therefore, there does

not typically exist a feasible solution that minimizes all objective functions simulta-

neously.

Pareto dominance: In a minimization problem, a vector ~

x

⇤ = (x⇤
1, ..., x

⇤
n) Pareto

dominates ~x ( ~x⇤ ⌫ ~x), if and only if x

⇤ is not worse than x in all k objectives

(fi(x⇤)  fi(x) 8i = 1, ..., n) and x

⇤ is strictly better than x in at least one objective

(fi(x⇤) < fi(x), i = 1, ..., n) [20]. For a given set of solutions, all points which are

not dominated by any other member of the set are called the non-dominated points.

For example, in Figure 2.3, points 3, 5 and 6 comprise the non-dominated front.

Pareto-optimal front: The set X consisting of all non-dominated solutions x⇤

in the search space is called Pareto-optimal front. We call a set of non-dominated

solutions that approximate the Pareto optimal front as Pareto front or known Pareto

front [20].
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Figure 2.3: Points and non-domination front [20]

Multi-Objective Combinatorial Optimization (MOCO) is a special type of MOO

problem that aims at finding a grouping, ordering, or assignment of a discrete, finite

set of objects that satisfies given conditions. By its nature, multi-objective com-

binatorial optimization deals with discrete, non-continuous problems [21]. The fog

planning problem addressed in this thesis belongs to the MOCO category. We will

give detailed formulations of the fog planning problem in Chapter 3. An essential

consequence of the discrete structure when trying to optimize the model is that it

is not su�cient to aggregate the objectives through the weighted sum method. The

study in [21] has proved that the discrete structure of the MOCO revokes the va-

lidity of LP completeness. Thus, there usually exist solutions that are not optimal

for any weighted sum of the objectives. These solutions are called Non-supported

E�cient (NE) solutions, whereas the remaining are called Supported E�cient (SE)

solutions. Usually, there are more NE solutions than SE solutions [22]. We will show

in Chapter 5 that our results directly proves this statement. All these NE solutions

which conform to the Pareto-optimal front, are vital for trade-o↵ analysis and deci-

sion making. Therefore, instead of the weighted sum method, we choose Evolutionary

Multi-objective Optimization (EMO) to solve the fog planning problem.

2.1.4 Evolutionary Multi-Objective Optimization

Evolutionary Multi-objective Optimization (EMO) is based on heuristic multi-

objective optimization techniques that imitate the principles of natural selection
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and survival of the fittest to find near-optimal solutions [23]. In EMO, multiple

Pareto-optimal solutions are found in a single simulation by emphasizing multiple

non-dominated and isolated solutions. Since EMOs are heuristic based algorithm,

they may not guarantee in finding Pareto-optimal points. Nonetheless, EMO proce-

dures have essential operators to continually evolve solution points similar to the way

most natural evolving systems strengthen their solutions [10].

Genetic Algorithm for MOCO Problems

The first class of evolutionary algorithm is Genetic Algorithm (GA). GA is a

population-based meta-heuristic techniques. GA iteratively evolves a set of encoded

solutions to find the best optimal solution. A set of randomly initialized solutions

are first encoded as binary or integer vectors (known as encoding scheme). Then,

the GA iteratively runs the selection, crossover, and mutation on these solutions to

obtain (hopefully) better solutions. The fitness function is defined to quantify the

optimality of solutions. The parent selection is based on the individual fitness. The

higher the fitness level is, the higher the probability that the individual will be selected

to reproduce. The whole process stops when the predefined conditions are met. The

pseudocode of the genetic algorithm is shown in Algorithm 1.

Algorithm 1 Generalized Genetic Algorithm

1: N  population size
2: P  initialized parent population by randomly creating N individuals
3: while stop condition is not met do
4: C  empty child population
5: while not enough individuals in C do
6: parent1  select parent (by tournament selection)
7: parent2  select parent (by tournament selection)
8: child1, child2  crossover(parent1, parent2)
9: mutate ( child1, child2)
10: evaluate the fitness of child1, child2
11: insert child1, child2 into C

12: end while
13: p  combine P and C to get N individuals for next generation
14: end while
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Particle Swarm Algorithm for MOCO problems

The second class of evolutionary algorithm is Particle Swarm Optimization (PSO).

PSO is a stochastic population-based algorithm. PSO was introduced by J. Kennedy

and R. Eberhart in [24]. It is inspired by the social behaviour of bird flocking or fish

schooling.

The basic PSO imitates a swarm of S particles (i.e. potential solutions), which

fly through a D-dimensional problem search space in search of the global optimum

position that produces the best fitness value.

First, we assign each particle with a random position x and a velocity vi (i =

1, 2, ..., S). In every iteration, each particle adjusts its velocity according to the his-

torical best and global best solution. The PSO algorithm updates the particle’s

position by:

~xi(t) = ~xi(t� 1) + ~vi(t) (2.1)

and the velocity function ~vi(t) is given by:

~vi(t) = w · ~vi(t� 1) + C1 · r1 · (~xpi � ~xi) + C2 · r2 · (~xgi � ~xi) (2.2)

The parameters, C1 and C2 are two positive learning factors.

For MOCO problems, the fitness function needs to fit the multi-objective context.

The redefined constrained-based fitness function for two solutions x

i and x

j is as

follows.

Definition A solution x

i is said to “constrain-dominate” a solution x

j (or xi � x

j)

if any of the following conditions are true:

1. Solution x

i is feasible and solution x

j is not.

2. Solution x

i and x

j are both infeasible, but solution x

i has a smaller constraint

violation, which can be computed by adding the normalized violation of all

constraints.

3. Both solution x

i and x

j are feasible and solution x

i dominates solution x

j in

the sense of Pareto dominance.

The detailed demonstration of solving the fog planning problem by using MOCO is

presented in Chapter 4.
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2.1.5 Multi-Objective Solution Quality Indicator

Assessing the solution quality in multi-objective optimization is complex compared

to single objective optimization. For the single-objective problem, one can assume

that any solution giving the minimal (or maximal) solution is preferable for minimiza-

tion problems (or maximization problems). However, in multi-objective optimization,

the output is always an approximation set. Without the help of an e�cient quality

indicator, we cannot evaluate the output between various heuristic or meta-heuristic

methods.

In previous studies, several quality indicators have been proposed: Hypervol-

ume [25], Epsilon [26], IGD [27] and R2 [28], to name a few. In the context of net-

work design, an e�cient multi-objective planning algorithm should explore as many

alternatives as possible, thus giving service providers a rich set of planning options.

In addition, each candidate solution (Pareto frontier) inside the solution set (Pareto

front) is expected to be as close to the optimal point as possible thus guaranteeing

the best network performance to the end users. Considering these criteria, in this

work, we use the hypervolume indicator to assess the diversity (richness of solution

sets) of the solution set, and the IGD indicator to assess the convergence (closeness

to the optimal front) of the solution set.

Hypervolume Indicator

The hypervolume indicator [29] calculates the volume covered by members of a

non-dominated set of solutions in the objective space. As shown in Figure 2.4, the

union space of all hypercubes constructed by reference point W and each solution is

defined as hypervolume. Since hypervolume is an indicator that covers both conver-

gence and diversity, this indicator is of high importance for practical evaluation. In

Chapter 5, we employ the hypervolume indicator to evaluate and compare the solu-

tion qualities of three evolutionary algorithms. An algorithm that produces a higher

hypervolume value is preferred [29].
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Figure 2.4: Hypervolume indicator [29]

IGD Indicator

The IGD indicator evaluates the quality of an objective vector set using a reference

point set. The IGD indicator can be written for a non-dominated objective vector

set A = {a1, a2, ...a|A|} and the reference point set Z = {z1, z2, .., z|Z|} [30].

IGD(A) =
1

|Z|

⇢ |Z|X

i=1

d

p
j

�1/p

(2.3)

where dj is the Euclidean distance from zj to its nearest points in A. Since the IGD

indicator represents the mean distance to the reference front, an lower IGD value

means that the solution set is of high quality.

2.2 Related Work

Fog computing research has attracted lots of attention. Researchers have been

working on studies of fog architecture [31], fog communication protocols [32] and

application logic in fog networks [33]. However, to the best of our knowledge, there

is little work dealing with the planning and design aspects of fog networks. Among

the studies pertaining to the fog, we review some notable ones (Subsection 2.2.1) and

hope this will give our readers some insight on fog studies. Two closely related topics
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under the network planning context are the distributed-cloud and multi-cloud network

planning. We give an overview of these two related works in Subsections 2.2.2 and

2.2.3. Moreover, since this thesis focuses on the fog/facility planning optimization,

we report some state-of-the-art operations research in the single-objective (Subsection

2.2.4) and multi-objective optimization (Subsection 2.2.5) that relates to the Facility

Location Problem (FLP).

2.2.1 Fog Computing

Ever since Cisco proposed the concept of fog computing, it has continually at-

tracted a large number of publications. Researchers started to explore the potential

technologies, services and applications that can benefit from the fog.

Bonomi et al. [34] discussed seven unique characteristics of the fog. All these char-

acteristics make the fog an appropriate platform for IoT applications. The authors

also stated that fog networks are beneficial to Wireless Sensors and Actuators Net-

works (WSANs). In another study, Stojmeovic et al. [13] discussed the advantage of

fog computing over cloud computing in various IoT and SDN scenarios. They further

emphasized that FC is a system-level horizontal architecture. This architecture is

able to distribute resources and services for computing, storage, control and network-

ing anywhere along the continuum from Cloud to Things. Klas, in [35], presented a

summary of the essential features in the FC network: wide-spread and geographically

available in large numbers, supporting mobile devices and IoT context specialized

services. Vaquero et al. [15] gave a comparison between cloud computing and fog

computing (FC) in terms of network infrastructures. Chiang in [36], discussed seven

use cases in fog network: from network content provisioning to client-based HetNets,

from shared bandwidth to smart tra�c control. The possibilities, to leverage the

massively distributed resources in the fog network to support data analytics system,

have been discussed by authors in [34]. In another study, the scholars in [31], envi-

sioned the FC in future smart cities and presented a hierarchical FC architecture to

support the massive number of infrastructures and monitoring services.

Checko et al., in [37], illustrated an analogy technique to combine the fog comput-

ing into 5th Generation mobile networks (5G), which were named as the Cloud RAN

technology (CRAN). Another study extended this concept further to Heterogeneous

Cloud Radio Access Networks (H-CRAN) [38]. See the work by Peng et al. [32], for

a complete overview of the concept of Fog-computing-based RAN.
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Regarding workload allocation and resource management in fog computing net-

works, Dsouza et al. [39] proposed a policy-based resource management in fog com-

puting, which expanded the current fog computing platform to support collaboration

and interoperability between di↵erent resources. Deng et al., in [40], focused on in-

vestigating the tradeo↵ between power consumption and transmission delay in the

fog-cloud computing system, and they formulated a work-load allocation problem

that aims at minimal power consumption considering the constrained service delay.

Sun and Zhang [33] proposed a fog computing structure to integrate spare resources

in the network applying a crowd-funding algorithm.

Among all the work describe above that are directly focusing on the fog computing

environment, none of them addresses the planning and design of fog networks as we

are presenting it in this thesis.

2.2.2 Distributed-Cloud Network Planning

The distributed clouds can be seen as a system in which geographically distributed

resources are available to application developers. In this context, dynamic resource

allocation and reallocation are important for accommodating unpredictable demands.

Endo et al. [41] highlighted and categorized the main challenges inherent to the im-

plementation of distributed-clouds. This research o↵ered a stepwise view from the

modelling phases to the optimization phases of the resource allocation in distributed

system. However, their research didnot consider the facility placement and facility

provisioning optimization.

Hwang et al [42] illustrated the planning processes of creating high-performance,

scalable, reliable distributed computing systems including the design principles, ar-

chitectures, and innovative applications.

Khosravi and Buyya [43] presented a taxonomy and classification of the existing

techniques for resource management in achieving a green cloud computing environ-

ment.

Alhazmi et al. [44] introduced a comprehensive system to solve the problem of

network mapping for a set of requests sent by cloud clients. The node and link

provisioning were performed periodically. Their simulation results showed that their

algorithm achieved the objectives in terms of generated revenue, served-connection

ratio, resource utilization and computational overhead.

From the perspective of virtual machine placement, Zhang et al. [45] proposed a
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clustering-based virtual machine placement algorithm. Their algorithm took full use

of the topology and the density property of cloud network. The simulation showed

that their algorithm was especially appropriate for large scale problems. In another

study, Khosravi et al. [46] proposed a dynamic virtual machine placement approach

considering energy and carbon cost in geographically distributed clouds. Their ap-

proach formulated the total energy cost using power usage e↵ectiveness metric. The

experimental results showed that their approach minimized the energy and carbon

cost while still meeting cloud users’ service level agreements.

Iturriaga et al. [11] studied the application of multi-objective evolutionary al-

gorithms for solving the energy-aware scheduling problem. The scheduling problem

took account of the scheduling of large workflows in a federation of datacenters. Their

model maximized the service quality metrics and reduces the energy requirement for

the computation. The experimental results demonstrated that the multi-objective

evolutionary approaches were capable to compute the accurate scheduling results.

In another study, Xu and Li, in [47], presented a joint request mapping and re-

sponse routing policy for geo-distributed cloud services. The utility functions were

used to capture the performance goals. However, their model focused on the resource

mapping and tra�c routing in distributed cloud networks without considering the

placement and sizing of the geo-distributed cloud. Also, Agarwal et al. in [48] de-

signed a data placement system for the geo-distributed cloud, and Garg et al. [49]

proposed an environment conscious scheduling scheme for the distributed network.

Both of their studies [48,49] focused on resource mapping and demands allocation in

distributed-cloud networks, but the facility planning and provisioning were missing.

Among all the work describe above that are directly related to the distributed-

cloud computing environment, none of them addresses the facility planning and pro-

visioning in distributed computing networks as we are presenting it in this thesis.

2.2.3 Multi-Cloud Network Planning

Similar to fog network planning, the geographical complexity of the distributed

network makes multi-cloud provisioning and dimensioning a complex task. Petcu

[50] identified the state-of-the-art research in building multi-cloud, and discussed the

enhancements that need to be done to the current solutions.

Stantchev and Schropfer [51] presented a planning policy to route business requests

to multi-cloud infrastructures. Their approach imposed an on-demand service level
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objective to specify the response time, tra�c and service rate. However, this model

only considered a single resource in the planning process.

Wang et al. [52] proposed an online resource allocation algorithm (NET) to im-

prove the multi-cloud performance. However, their algorithm did not consider the

financial cost, and they only solved the problem with a linear programming toolbox.

In another study, Pascual et al. [53] proposed a multi-objective cloud infrastructure

placement policy. This online policy supported tra�c-awareness optimization. Nev-

ertheless, the bi-objective function (communication cost and number of servers (K))

over-simplified the real-world deployment.

From the workload scheduling perspective, Chen et al. [54] proposed two heuristic

algorithms to allocate streaming workflows to geo-distributed DCs with the goal of

minimizing the communication and computation costs. Their model imposed a strict

latency constraint. In another study, Bossche et al. [55] analyzed and proposed a

binary integer program formulation of the scheduling problem. Their work proved

that the linear programming solver is capable of producing tractable solutions for

scheduling applications in the public cloud, but the high solving time made this

approach less feasible in a hybrid cloud scenario.

Simarro et al. [56] proposed a scheduling model for optimizing virtual cluster

placements across multiply cloud o↵ers. Their evaluation was based on a real-world

cloud environment, and the results showed that users’ investment decreased when

part of the virtual infrastructure was dynamically distributed among clouds instead

of maintaining it in a fixed one.

From the load management perspective, Grozev and Buyya [57] proposed an adap-

tive provisioning and load distribution algorithm that optimized overall cost and

response delays concerning regulatory constraints. Ismail et al. [58] proposed a self-

adaptation architecture that operated in the multi-cloud environment. This model

addressed the decentralized planning problem in load adaptation.

Wang et al., in [59], created a dynamic cloud service selection strategy named

DCS. Their selection strategy adopted the methodology of cloud service brokers.

Each cloud service broker managed some clustered cloud services, and performed

the DCS strategy applying the adaptive learning mechanism. The objective was to

dynamically optimize the cloud service selection and to return the best service result

to the user.

Celesti et al. in [60] proposed the Cross-cloud Federation Model (CCFM) to model
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the multi-cloud federation. The CCFM could be divided into four stages: discovery,

matchmaking, authentication, and establishment. However, their work focused on

optimizing the virtual machine management without taking account of the physical

machine provisioning.

Among all the work describe above that are directly related to the multi-cloud

computing environment, most of them focused on workload scheduling and resource

allocation, while none of them addresses the planning and design of distributed com-

puting networks as we are presenting it in this thesis.

2.2.4 Single-Objective Optimization Related to the Fog

Planning Problem

The fog planning problem can be solved by using single-objective optimizing meth-

ods. Intuitively, there are two approaches to model the problem in a single-objective

setting:

• First approach: Minimize the network latency and impose a monetary budget

constraint.

• Second approach: Minimize the building cost of the fog infrastructure and im-

pose a network performance constraint.

In combinatorial optimization research, the first approach can be described as a K-

median clustering problem, while the second one can be described as a Facility Loca-

tion Problem (FLP).

The K-median models the problem of finding a minimum cost clustering through

applying an upper bound on the number of fogs (K) that can be deployed. The

objective of the K-median is to minimize the total distance between each facility and

clients. The distance between facility i and client j can reflect various network perfor-

mances such as latency, hop counts, etc. There have been a number of approximation

algorithms developed for the K-median clustering problem. The first constant factor

approximation algorithm was created by Charikar et al. [61] based on LP-rounding.

The current best (3+2/p)-approximation approach was due to Arya et al. [62] based

on a local search approach.

FLP considers facility cost and connect cost into the objective function. Therefore,

it reflects the total required budget. Minimizing the objective function is equivalent to
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minimizing the capital expenditure required to build the network. The first constant

factor approximation, 3.16-approximation guarantee, was due to Shmoys and Tardos

[63], which is based on LP-rounding. The current best algorithm, achieving 1.61

guarantee, was due to Jain, Mahdian, and Saberi [64], which is based on greedy

Primal-Dual. Additionally, Guha and Khuller [5] proved that it is impossible to get

an approximation guarantee of 1.463 for the metric facility location problem, unless

NP ✓ DTIME[nO(loglogn)].

2.2.5 Multi-Objective Combinatorial Optimization

The research related to multi-objective optimization can be classified into two

classes:

1. Classical preference-based method

2. Multi-objective evolutionary method

The former method includes the weighted sum approach, the compromised approach

and the rotated weighted metric method [65]. Additionally, the ✏-Constraint method

and analytic hierarchy solve the multi-objective function by reformulating an ob-

jective as constraints [66]. Also, there is the Benson’s method [67] that drives the

solution point to the Pareto front through maximizing the di↵erence between the

solution points and the reference points. In addition, the value function method [68]

employs the unconstrained auxiliary function to reach the unique root of the global

optimization.

In the second method, evolutionary algorithms are applied to perform Pareto

search [69–71]. The researchers in [10], presented a detail description and evalu-

ations of various MOEAs. Their experimental results have showed that NSGA-II

and its derivative Evolutionary Algorithms (EA) provide better performance com-

pared to previous EA: such as (HLGA, NPGA and VEGA). The NSGA-II algorithm,

proposed in [8], is the most prominent evolutionary multi-objective heuristic today.

For example, Deb et al. [8] unveiled that, on eight of the nine benchmark problems,

NSGA-II outperforms HLGA, NPGA, and VEGA in 75% of the runs. Moreover,

HLGA, NPGA, and VEGA cover less than 10% of the NSGA outcomes in 75% of all

runs and less than 25% in 99% of the runs.

What di↵erentiated NSGA-II from previous genetic algorithms is an intuitive in-

vention of fast elitist ranking procedure. Using this fast ranking procedure, NSGA-II
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always preserves the best (higher rank in nondominated rank and larger crowding dis-

tance) solution inside the latest population. We will apply the same non-dominated

sorting and elitist ranking in our experiment and proposed algorithm.

2.3 Summary

The research related to fog planning is still insu�cient. Although previous re-

searchers have proposed resource allocation schemes and facility planning algorithms

in geo-distributed cloud (distributed-cloud and multi-cloud), a complete model, that

considers placement and provisioning of fog nodes and tactical customers allocation

in fog networks, is yet to be proposed. Moreover, a robust solving procedure con-

sidering budget and service level is a necessity to this problem. Aiming at these

requirements, in this thesis, we propose a multi-objective method to solve the fog

planning problem. This model optimizes the capital expenditure and the network

delay as a bi-objective problem and provides a complete Pareto front of the cost and

the network performance.



Chapter 3

Formulation of the Fog Planning Problem

In this chapter, a mathematical model is formulated for the fog planning problem

with a comprehensive explanation. The rest of this chapter is organized as follows.

In Section 3.1, we first present the model formulation including the basic concepts,

assumptions, objective functions and constraints. Then, Section 3.2 gives an analysis

of the NP-hardness of the fog planning problem. In addition, Section 3.3 describes

two tuneable parameters in our formulation: network usage function and renting cost.

Finally, Section 3.4 summarizes the chapter.

3.1 Fog Planning Problem Description and Mod-

elling

Essentially, the fog planning problem can be decomposed into three subproblems:

the fog placement subproblem, fog dimensioning subproblem and demand routing

subproblem. In order to find a solution for the whole fog network, these three sub-

problems can be solved sequentially. Unfortunately, such an approach does not con-

sider the interconnections between the subproblems and the solutions may su↵er from

local optimum. A di↵erent way of solving the fog planning problem is to use a global

approach, where the three subproblems are solved simultaneously. Since all the com-

binations between the subproblems are taken into consideration, the global approach

can be expected to reach the global optimum. In this thesis, we use a global approach

to model the fog planning problem.

26



27

3.1.1 Basic Concepts

Resource demand: In this thesis, two types of resources are considered at the

fog nodes: vCPU cores and memory. However, other resources can be included such

as the storage and GPU units. This can be achieved by increasing the dimension of

the fog profile. For any single period of time, each user-cluster generates a request

consisting of vCPU, memory, and bandwidth demands. If a request can be routed to

a fog node in such a way that the required vCPU, memory and link bandwidth can

be satisfied, then the request is served; otherwise, the request is dropped and sent to

the cloud.

Fog type: The fog type we talk about here is an abstraction of the real-world ma-

chine server. Di↵erent fog types are associated with di↵erent computation resources.

In real-world planning, the number of fog types and fog profiles can be changed to

adequate types or amounts.

Link type: Similarly, di↵erent link types between the fog nodes and the cloud

are considered. Each link is associated with a bandwidth capacity. These links carry

the tra�c flow between the fog nodes and the cloud for back-end services such as

data synchronizations and application management.

Edge-cluster: Edge-cluster is the notion we used to represent an agglomeration

of user requests. Typically, several users are using the cloud at the same time from a

common geographical region sharing a unique IP prefix. Instead of modelling them

individually, we aggregate them together as a “edge-cluster”. However, in optimiza-

tion research, the request unit is named as “user”. In this thesis, the terms “user”

and “edge-cluster” have the same meaning.

3.1.2 Assumption

This section describes the assumptions used in this thesis. To formulate the fog

planning model, we assume the following information is known:

• The locations of all the edge devices and the possible locations of all the fog

nodes (i.e., x and y coordinates). For each edge device, the generated tra�c is

known.

• The characteristics, i.e., memory, virtual Central Processing Unit (vCPU) of

di↵erent types of fogs that may be installed in the network.
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• The bandwidth availability and the cost of each link type. The link is installed

between the fog nodes and the cloud.

• The cloud has unlimited memory and vCPU. We also assume that the cloud is

located in a remote location and if a user cannot be served by the fog, it will

be routed to the cloud.

• The fog nodes send a fix ratio ⌧ of their total tra�c to the cloud. The ⌧ here is a

tunable parameter. Di↵erent applications will have a di↵erent value of ⌧ which

captures the amount of tra�c that needs to be sent from the fog nodes to the

cloud. The possible components of this tra�c include database synchronization,

data uploading, service management, etc.

3.1.3 Notation

The following notation is defined based upon the information mentioned above.

1. Sets

• I = {1, ..., i, ...,m} set of potential location sites. The locationm represents

the remote cloud-centre.

• J, set of edge device clusters that must be served by the fog nodes or the

cloud. Each edge-cluster has an aggregated memory, vCPU and tra�c

demands.

– ⌘j, the total number of vCPU required by an edge-cluster j 2 J .

– ⇣j, the total amount of memory required by an edge-cluster j 2 J .

– Tj, the total tra�c generated by an edge-cluster j 2 J .

– j, the link speed of an edge-cluster j 2 J .

• K, set of fog types (or capacity level) that can be installed at di↵erent

locations. Di↵erent fog types k 2 K have di↵erent amount of vCPU,

memory.

– ↵

k the total number of vCPU available for the fog of type k 2 K.

– �

k, the total amount of memory available for the fog of type k 2 K.

– c

Fog
k , the cost for a fog of type k 2 K.
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• L, set of link types that can be installed at di↵erent locations to maintain

connections to cloud datacenters. Di↵erent link types l 2 L have di↵erent

bandwidth capacities.

– �

l, the egress bandwidth upper limit for link type l 2 L.

– c

Link
l , the cost ($/meter) for a link of type l 2 L.

• c

Rent
i , the renting cost for each potential location i 2 I.

2. Functions

• dab = Distance(a, b). The euclidean distance between points a and b. The

values of points a and b are the x, y coordinates.

• �, processing delay. Each router or switch in the data path adds a finite

amount of delay as the packet is received, processed, and then forwarded.

This includes the time taken at each layer of the Transmission Control

Protocol/Internet Protocol (TCP/IP) down to the bit level layer. The

processing delay depends on the hop count between user’s connection to

fog or cloud. The processing delay is calculated as:

Processing Delay(�) = r · h (3.1)

where r is the mean processing delay for each hop (switch or router) and

h represents the hop count.

•  , transmission delay. The time taken for a process to send the informa-

tion to the transmission medium (finer or wire). The transmission delay

depends on the link speed that is used and the packet size that is to be

sent. The transmission delay is calculated as:

Transmission Delay( ) = �/ (3.2)

where � is the packet size (bytes) and  represents the link speed

(bytes/sec).

• µ, propagation delay. It equals to the time taken to transmit a signal

from the source to the destination. The propagation delay depends on the

medium used. For copper wires, the speed can be approximated to 0.59
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speed of light. In this thesis, we use 0.59 speed of light for the speed of

copper wire. The propagation delay is calculated as:

Propagation Delay(µ) = dab/(0.59 · Light Speed). (3.3)

where dab is the euclidean distance between Edge-cluster a and Fog b (km).

• D(dab). The function D(x) is the network usage descriptor. The net-

work usage function D(x) is an abstraction of the network usage between

each user and fog facilities, which could represent the network latency ex-

perienced by users or the tra�c sending to the cloud. This function is

transparent to the optimization algorithm. In real life planning, latency is

arguably the most important performance metric. A small increase in the

latency can cause substantial service level degradation [72,73]. Therefore,

in our experiment, the network usage function D(x) is modelled as the

point to point delay.

3. Decision Variables

• xij, a 0-1 variable such that xij = 1 if and only if the edge device cluster

j 2 J is connected to location i 2 I;

• yik, a 0-1 variable such that yik = 1 if and only if the fog type k 2 Ki is

installed at location i 2 I;

• zil, a 0-1 variable such that zl = 1 if and only if the link type l 2 L is

installed at location i 2 I.
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      Link Type 1 (100 MBps)

      Link Type 2 (1 GBps)

    Link Type 3 (10 GBps)

FOG TYPE LINK TYPEFog

Edge-
Cluster

Cloud

LTE LTE Fiber
Fiber

WIFI
Fiber ADSL

Fiber
WIFI3G

FiberFiber

Figure 3.1: Fog placement and fog dimensioning

3.1.4 Mathematical Model

Based on the notation presented in the previous section, we can now formulate

the Fog Planning Problem, denoted FPP, as follows:
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Minimize Cost

Minimize

 mX

i=1

X

k2K

yikc
Rent
i +

mX

i=1

X

k2K

yikc
Fog
k +

mX

i=1

X

l2L

zilc
Link
l di,cloud

�
(3.4)

Minimize Delay

Minimize

 mX

i=1

X

j2J

D(dij)xij

�
(3.5)

D(dab) =

8
><

>:

 

ToFog + µ

ToFog + �

ToFog
X

i2I\m

xij = 1 (connect to the fog)

 

ToCloud + µ

ToCloud + �

ToCloud
xmj = 1 (connect to the cloud)

As shown above, to achieve the maximum network performance and cost e�ciency,

the model simultaneously minimizes the total network delay and the total capital

expenditure required to deploy the fog network.

Both Equation (3.4) and Equation (3.5) are subject to following constraints:

mX

i=1

xij = 1 (8j 2 J) (3.6)

Constraints (3.6) are the single source constraints. They ensure that each user con-

nects to exactly one fog or cloud.

X

k2K

yik  1 (8i 2 I) (3.7)

Constraints (3.7) are the uniqueness constraints. They enforce that at most one fog

node is installed at a given location. In practice, we can install multiple servers in

each location, and each server can have di↵erent hardware configurations (memory

sticks, CPU, hard disk drive, GPU, etc.) To reduce the complexity, we generalize

di↵erent server types and hardware combinations to a fix number of fog types. Under

this assumption, each potential location can select an appropriate fog type to accom-

modate the workload demands. In other words, we cannot install two or more fog

nodes at the same location. If the left side of Equation (3.7) equals to zero, it means

that the corresponding location is not selected; no fog facility will be installed at this
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location.

X

l2L

zil  1 (8i 2 I) (3.8)

Similar to Constraints (3.7), Constraints (3.8) are the link uniqueness constraints.

They enforce that at most one link type can be installed at each location. If Equation

(3.7) equals to zero, the corresponding location is not open and therefore, no link will

be installed at this location.

xij �
X

k2K

yik  0 (8i 2 I, 8j 2 J) (3.9)

Constraints (3.9) : Openness constraints. These constraints ensure that users can

only connect to a fog that is opened.

X

l2L

zil 
X

k2K

yik (8i 2 I) (3.10)

Constraints (3.10) make sure that each installed fog node at location i will be con-

nected to the cloud.

X

j2J

⌘jxij 
X

k2K

yik↵
k (8i 2 I) (3.11)

X

j2J

⇣jxij 
X

k2K

yik�
k (8i 2 I) (3.12)

Constraints (3.11) and (3.12) are the capacity constraints. They are the capacity

constraints for vCPU, memory at the node level. They ensure that the total resource

demand does not exceed each fog node’s hardware capacity.

X

j2J

xijTj · ⌧ 
X

l2L

zil�
l (8i 2 I) (3.13)
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Constraints (3.13) are the link capacity constraints. They state that the total band-

width from fog site to cloud cannot exceed the egress link bandwidth upper bound.

xij 2 {0, 1} (8i 2 I, 8j 2 J) (3.14)

yik 2 {0, 1} (8i 2 I, 8k 2 K) (3.15)

zik 2 {0, 1} (8i 2 I, 8k 2 K) (3.16)

Finally, Constraints (3.14), (3.15) and (3.16) define the decision variables as binary.

3.2 NP-Hardness

This section establishes the NP-hardness of the FPP. The FPP has two objective

functions that need to be minimized: building cost and network delay. The decision

variables consist of the placement and assignment decisions.

Essentially, this problem is a multi-objective combinatorial problem. If we relax

certain conditions, there are related single-objective optimization problems that we

can gain insight from. Suppose that we know that certain number of fog facilities

will be opened and that we relax the capacity constraint at each location. Then the

problem of assigning edge-clusters to open facilities while minimizing the total delay

can be reduced to the K-median clustering problem.

K-median clustering problem: Suppose there exists a bipartite graph with a

bi-partition (F, C), where F is a set of facilities and C is a set of clients, and let k

be a positive integer specifying the number of facilities allowed to be opened. Let cij

be the cost of connecting client j to facility i. The objectives are to find a subset

I ✓ F, |I|  k of facilities that should be opened and a function � : C ! I assigning

clients to open facilities that minimize the total connecting costs [74].

The NP-hardness of the K-median clustering problem was proved in 1984 by

Megiddo and Supowit [75]. However, even if we can solve this problem using an

approximation algorithm, we still have to decide a reasonable k regarding to the total

budget.

From another perspective, suppose we combine the building cost and network
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delay into a single objective function. The objective function becomes:

Minimize : ↵ ·
opened fogX

fog building cost+ � ·
all usersX

network delay (3.17)

where ↵ and � are the normalizing constants. Problems of this form are referred to

as the capacitated facility location problem.

Capacitated Facility Location Problem (CFLP): Suppose there exists a

bipartite graph with a bi-partition (F, C), where F is a set of facilities and C is a set

of clients. A fixed cost fi � 0 for opening each facility i 2 F ; a capacity ui � 0 for

each facility i 2 F ; a demand dj � 0 for each client j 2 C. The problem is to find a

subset I ✓ F , of facilities to opened as well as a assignment function � : C ! I that

assigns clients to open facilities. The objective is to minimize the total connecting cost

without violating each facility’s capacity constraint:
P

j2C xijdj  ui, 8i 2 F [74].

Megiddo and Supowit [75] proved that exact solution of CFLP is NP-hard. Fowler

el al. [76] proved that when the error is small, even a approximation to this problem

is NP-hard.

Specifically, our problem needs to add a single source constraint. The reason

is each users can only go to one single fog; in this regard, the problem becomes

the Single-Source Capacitated Facility Location Problem (SSCFLP). In SSCFLP,

deciding whether a feasible solution exists at all is NP-complete [77]. Moreover, our

problem has a modular facility cost model, which provides several capacity levels

of the fog facility. This transfers the model to a single-source modular capacitated

facility location problem, which is a more complicated version of CFLP [77].

As discussed above, the single objective model of this problem is extremely com-

plicated and computational complex. Therefore, in the following chapter, we will

introduce methods to solve this planning problem from the multi-objective perspec-

tive.

Noticeably, if we take ↵ = 1 and � = �� 1 and divide the above equation with �,

the equation turns to:

Minimize :
1

�

·
opened fogX

fog building cost+ (1� 1

�

)
all usersX

network delay (3.18)

This method coincides with the Weighted Scalarization method, which is a general

form of the weighted sum method. Similar to the weighted sum method, weighted
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scalarization has the same drawbacks of the discrete incompleteness, which has been

discussed in Chapter 2.

3.3 Extended Discussion of the FPP Model

Network Usage Descriptor D(x): As mentioned above, the network usage

function D(x) is an abstraction of the network usage between each user and fog facil-

ities. Therefore, it is transparent to the mathematical model and solving procedures

described above. The D(x) can be the end to end delay, bandwidth usage or hop

count (see Table 3.1). More importantly, it means we can manipulate this D(x) ma-

trix beforehand to fit specific planning requirements. For instance, some users may

not want their data to be uploaded to a specific fog entity due to security concerns or

policy regulation issues. We can label the value D(x) of this user-fog link to infinite;

therefore, the tra�c of these users will never be sent to the unfavourable fog node.

Table 3.1: Network usage descriptor D(x)

#USER/#FOG FOG1 FOG2 FOG3 CLOUD

D(x) equals to point to point delay (Microsecond)

User-1 32.66 95.75 72.12 62.28

User-2 77.89 30.4 66.16 51

User-3 63.12 93.16 49.87 93.01

User-4 95.95 56.19 54.23 31.89

User-5 62.97 59.38 46.35 79.03

...

D(x) equals to tra�c (Megabyte)

User-1 1.0889 2.2891 9.4236 1.6984

User-2 9.9679 7.0204 9.9916 7.0415

User-3 6.5581 6.8513 1.9966 3.3555

User-4 4.4329 4.7594 3.8985 5.5533

User-5 4.9868 5.9794 4.8781 4.6624

...

D(x) equals to hop count

User-1 5 11 15 14

User-2 13 8 11 3

User-3 7 11 8 4

User-4 10 5 13 6

User-5 11 6 8 9

...
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Renting Cost: The strategy of using a massive number of fogs in various lo-

cations may be preferred for a better network performance. Nonetheless, building

a larger number of fog sites within a local area incurs higher operational expenses.

Also, the energy e�ciency would su↵er from a large number of operating servers.

Therefore, the rent parameter gives us the power to adjust the number of fog to be

built. A large renting cost will force the model to operate a smaller number of fogs

and produce an e�cient fog placement plan with low maintenance costs.

3.4 Summary

In this chapter, we formulated the mathematical model for the fog planning prob-

lem. The fog planning problem is an optimization problem with two objectives: 1)

minimize the capital expenditure and 2) minimize the delay experienced by the users.

To better understand the problem, the NP-hardness of the FPP is analyzed in Sec-

tion 3.2. In Section 3.3, we further explained two parameters in our model: network

usage and renting cost. Varying the values of these two parameters could result in a

flexible planning model.



Chapter 4

Algorithms for Solving the Fog Planning

Problem

This chapter presents the exact and approximation algorithms for the fog network

planning. The rest of this chapter is organized as follows.

First, an exact algorithm (the weighted sum method) is presented in Section 4.1,

including modelling procedure and solving processes by using Cplex. The results ob-

tained from the weighted sum method are used as a benchmark for the delay gap

comparison. The details of the delay gap comparison will be presented in Chapter

5. In Section 4.2, we present the methodology and procedure of two existing Evo-

lutionary Multi-objective Optimization (EMO) algorithms (NSGA-II and SMPSO).

These two algorithms are based on the well known Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO) respectively. The optimization process and the

pseudocode of both algorithms are provided. Then, motivated by various drawbacks

of existing heuristic algorithms, a novel evolutionary algorithm is proposed in Sec-

tion 4.3. Finally, Section 4.4 summarizes the chapter.

4.1 Exact Algorithm for the FPP

To solve the multi-objective problem, the basic ideology is to combine multiple

objectives into a single objective. The most popular approach applied to this ideology

is the weighted sum method.

38
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4.1.1 Weighted Sum Method

Weighted sum method is a popular and widely used approach for multi-objective

optimization problems [78]. The weighted sum approach combines multiple objective

functions into a single objective function. In this combination, di↵erent objectives

are given a certain weight between 0 and 1. The multi-objective problem can be

combined by using the Formula (4.1).

min or max

⇢ QX

j=1

�jz
j(x) : x 2 X

�
(4.1)

0  �j  1 (4.2)

QX

j=1

�j = 1 (4.3)

where �j is the weight parameter assigned to each objective to capture the relative

importance on a given objective. Assigning a higher (lower) weight places more

(less) emphasis on this objective. Formula (4.1) is used to minimize or maximize the

parametric summation of all the objective functions. By varying the weight vector, all

Supported E�cient (SE) solutions can be found [21]. The advantage of the weighted

sum method is that for each � 2 RQ, the problem is as di�cult as the single objective

problem [21]. The optimal solution can be obtained by using the Linear Programming

(LP) solver if the time complexity is not a constraint.

4.1.2 Solving the Weighted Sum Model with Cplex

After combining multiple objective functions into one single objective function,

the next step is to solve this single objective function. In this work, a commercial LP

solver called Cplex, is employed to obtain optimal solutions and solve the problems.

4.2 Approximation Algorithms for the FPP

In this thesis, the Evolutionary Multi-objective Optimization (EMO) is applied

to solve the fog planning problem. EMO is based on heuristic multi-objective opti-

mization techniques that imitate the principles of natural selection and survival of the

fittest to find near-optimal solutions [23]. In EMO, multiple Pareto-optimal solutions
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are found in a single simulation by emphasizing multiple non-dominated and isolated

solutions [23]. To better understand EMO, we will introduce several basic concepts

of the EMO in next section.

4.2.1 Basic Concepts

Chromosome or particle: In evolutionary algorithms, the solution of a problem

is first encoded in the form of strings of binary numbers. Then, the evolutionary

operators, such as crossover and mutation, can be applied on the encoded strings to

obtain the optimal solution of the problem. The terms “chromosome” and “particle”

are used to represent this “string” in GA and PSO respectively. For the fog network

planning problem, the string is encoded to reflect the fog placement scheme, the fog

dimensioning scheme and the edge-cluster routing policy.

Non-dominated sorting: The non-dominated sorting process sorts a population

into a hierarchy of subpopulations based on the ordering of the Pareto dominance.

NSGA-II employs this process to keep the high rank of non-dominated solutions inside

the latest population.

Position and velocity updating: SMPSO employs the position and velocity

updating process to evolve each “particle”. In every iteration, each particle updates

its position and velocity in the search space by following the global and historical

best solutions (fitness).

4.2.2 Evolutionary Multi-Objective Optimization Methodol-

ogy

The EMO algorithm starts the reproduction process by generating an initial pop-

ulation. Each member in the initial population represents a candidate solution to the

goal problem. Each member is then evaluated by the given objective and constraint

functions to obtain a fitness value. Then, di↵erent EMO algorithms will apply di↵er-

ent evolving processes to improve the solution quality (fitness value) of the members

in the population. The whole process terminates when the predefined conditions are

met. The solutions will be selected as output only if they are non-dominated by any

members in the population, and they are not violating any constrains.

As mentioned above, the initial population is a group of candidate solutions. The

first step of generating the initial population, is to design a representative scheme to
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encode the FPP decision variables. The encoding scheme transfers multiple variables

from a goal problem into a string of binary or integer values. The encoding technique

has significant influence on EMO’s performance. A detailed overview of EMO’s en-

coding techniques is presented in [79]. In order to solve di↵erent engineering problems,

EMO’s encoding must be modified to fit the specific problem.

4.2.3 Proposed FPP Decision Variables Encoding

The method to encode the fog placement, fog dimensioning, and routing tree into

chromosomes or particles is critical for developing the solution procedure. The classic

random encoding is not appropriate for the fog planning problem due to the following

reasons:

• The nature of the single-source combinatorial problem indicates that each edge-

cluster can only connect to one single fog, and each fog can only select one fog

type. The crossover and mutation process in evolutionary algorithms will break

this unmodality, and will return infeasible results which do not correspond to a

valid network plan.

• Random encoding leads to a longer computing time due to the fact that a large

portion of time is consumed in evolving infeasible solutions.

In this thesis, a modified Count-Preserving Encoding (CPE) is proposed to solve the

FPP. The CPE, proposed in [80], solves the problem in random encoding through a

bit-count tracking scheme. In our encoding scheme, we employ the same bit-count

tracking scheme, and combine a novel facility capacity guarantee. The facility capac-

ity guarantee is enforced by applying the following constrains on each chromosome.

We assume the number of edge-clusters as |J |, and the number of potential lo-

cations as |I|. The dimension of the chromosome (N) equals to 2|I| + |J |. Let,

Cm =
⇥
Xm,1, Xm,2, Xm,3, ..., Xm,N

⇤
be the mth particle of the population where

each component: Xm,n, 1  n  |J | denotes where edge-cluster n is routed to.

Xm,n, |J | + 1  n  |I| + |J | denotes the fog type decisions for di↵erent potential

location i. Xm,n, |I|+ |J |+ 1  n  2|I|+ |J | denotes the link decisions for location

i. Figure 4.1 illustrates a variable string example for a FPP with five edge-clusters

and three potential fog sites.



42

Figure 4.1: An EMO encoding example for FPP

The capacity enforcement for the mth particle is shown below:

For each fog type field: Xm,n, (|J |+ 1  n  |I|+ |J |) (4.4)

D

vCPU
Xm,n

=Max(LUB(k 2 K|↵k
> g(i), i 2 I), Xm,n) (4.5)

D

memory
Xm,n

=Max(LUB(k 2 K|�k
> h(i), i 2 I), Xm,n) (4.6)

Xm,n =Max(DvCPU
Xm,n

, D

memory
Xn

) (4.7)

For each link type field: Xm,n, (|I|+ |J |+ 1  n  2|I|+ |J |) (4.8)

Xm,n =Max(LUB(l 2 L|�l
> ⌧ · o(i), i 2 I), Xm,n) (4.9)

Function LUB(·) calculates the Least Upper Bound (LUB) for the fog type or the link

type. In other words, for each location, it outputs the facility type with computation

resources no less than the total demands routing to this location. Function g(i),

h(i), o(i) represents the total vCPU requests, memory requests, and tra�c requests

routing to the location i, (i 2 I). Equation (4.7) enforces that each fog site’s capacity

is no less than either the total vCPU or the total memory demands. Equation (4.9)

ensures that each fog site’s link bandwidth is no less than the tra�c demands between

this fog node and the cloud.

4.2.4 Description of NSGA-II

NSGA-II follows the same steps as the classical GA. The classical GA first ini-

tializes a population of N individuals, then it generates o↵springs by applying the
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crossover and mutation operations, and finally evaluates and selects the fittest so-

lutions as output solutions. What di↵erentiates NSGA-II from previous algorithms

(such as VEGA and HLGA) is an intuitive invention of the fast elitist ranking proce-

dure (Non-dominated Sorting). Using this fast ranking procedure, NSGA-II always

preserves the best (higher rank in non-dominated rank and larger crowding distance)

solutions inside the latest population. The pseudocode of the NSGA-II algorithm is

presented in Algorithm 2.

Algorithm 2 NSGA-II Algorithm

1: Initialize a population of N individuals as the “parent population” P

2: while Iteration < MaxIteration do

3: C  Empty child population

4: while the number of individuals C in < N do

5: Select parent1 (by tournament selection)

6: Select parent2 (by tournament selection)

7: Get child1, child2 through the Binary Crossover (parent1, parent2)

8: Polynomial Mutation (child1, child2)

9: Evaluate child1, child2 for their fitness values

10: Insert child1, child2 into C

11: end while

12: U  Combine P and C to get 2N individuals

13: Rank the union set U using the nondominated sorting.

14: P  N front individuals in U by the crowded comparison selector.

15: end while

16: Return the set of feasible non-dominated solutions in the latest population.

4.2.5 Description of the SMPSO

Particle Swarm Optimization (proposed by J. Kennedy and R. Eberhart in [24])

models the social behaviour of biological creatures through the mathematical ap-

proach. The pseudocode of the SMPSO algorithm is presented in Algorithm 3. Sim-

ilar to the classical PSO algorithm, SMPSO first randomly generates a set of N

initial solutions, then iteratively updates the “solution positions” in the searching

space [9]. In each iteration, every particle adjusts its velocity to follow the local and

global best solutions. We assume that each particle i is randomly assigned a position
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~xi (i = 1, 2, ..., N) and a velocity ~vi (i = 1, 2, ..., N). The algorithm updates the

particle’s position by:

~xi(t) = ~xi(t� 1) + ~vi(t) (4.10)

The velocity function ~vi(t) is given by:

~vi(t) = w · ~vi(t� 1) + C1 · r1 · (~xpi � ~xi) + C2 · r2 · (~xgi � ~xi) (4.11)

where ~xi(t) and ~vi(t) are the location and velocity of particle i at time t. The ~xpi

and ~xgi are respectively, the historical best and the global best points. w is the

inertia weight of the particle, which controls the trade-o↵ between the global and

local experience. C1 and C2 are learning factors which control the e↵ect of the local

and global best particle. r1 and r2 add randomness between the global and local

searching direction.

Algorithm 3 SMPSO Algorithm

1: Initialize a population of N individuals as “swarm population” S
2: Evaluate the solutions in the “swarm population”
3: Put non-dominated solutions into an empty “elite archive” A
4: while Iteration < MaxIteration do
5: for each s 2 S do
6: Use constrained binary tournament to select a solution from the elite

archive
7: Use the solution from last step as the global best particle
8: Compute the speed of s according to the speed formula (4.11)
9: Update the position of s according to the speed calculated in the last step
10: end for
11: Apply the polynomial mutation to ⌧% of the population
12: Evaluate the solutions in the swarm population
13: Insert the non-dominated solutions from S to A.
14: end while
15: Return the set of feasible non-dominated solutions in the elite archive (A).

A major di↵erence between SMPSO and previous PSO-based algorithms is that

SMPSO adopts a constriction coe�cient as shown in Equation (4.12) on the resulting

velocity [81].

� =
2

2� '�
p
'

2 � 4'
(4.12)



45

where

' =

8
><

>:

C1 + C2 if C1 + C2 > 4

1 if C1 + C2  4
(4.13)

Another di↵erence, in SMPSO, is the polynomial mutation is applied to the ⌧ percent

of the particles. In our experiment, we use the same value for ⌧ (set to 15%), as in

the original implementation of SMPSO [9].

4.3 Proposed Approximation Algorithm

Previous studies in NSGA-II and SMPSO mainly focus on applying these algo-

rithms on continuous problems. However, for discrete problems, such as the combina-

torial problem we are dealing with, the preliminary results of our experiment reveal

that these two heuristic algorithms hold di↵erent characteristics.

As shown in Figure 4.2, the NSGA-II performs e�ciently regarding the conver-

gence to the Pareto front, however, its solution points are unevenly distributed in the

search space. Even if we change the mutation index or the crossover index settings,

no obvious improvement can be perceived. The researchers in [82], have observed

the same disadvantage in continuous NSGA-II applications. This disadvantage stems

from the NSGA-II’s sorting process. The concentrated e↵ect in the non-dominated

sorting harms the diversity in NSGA-II solutions. The researchers in [82] proposed

an elitism strategy to overcome this shortcoming. However, the time-complexity in-

volved in evaluating the elitism sets is high, and can be a huge issue for large scale

problems.
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Figure 4.2: NSGA-II algorithm struggles to cover the whole Pareto front

On the other hand, SMPSO shows di↵erent characteristics. The preliminary ex-

periment demonstrates that SMPSO performs e�ciently on exploring the whole front.

It preserves the diversity in the solutions set and always produces evenly distributed

Pareto frontiers. However, after a given number of iterations, SMPSO struggles to

push the solution set to converge to the true optimal front. The preliminary results

are shown in Figure 4.3.
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Figure 4.3: SMPSO algorithm struggles to converge to true pareto front

Motivated by the disadvantages in NSGA-II and SMPSO algorithms, we propose

a new version of NSGA-II. The algorithm developed is named Particle Swarm Op-

timized Non-dominated Sorting Genetic Algorithm (PSONSGA). The PSONSGA is

designed specifically to exploit the searching e�ciency of PSO-based algorithms.

4.3.1 Description of the PSONSGA

Particle Swarm Optimized Non-dominated Sorting Genetic Algorithm (PSON-

SGA) is a variation of NSGA-II based on the idea of employing particle swarm

optimization before proceeding to the NSGA-II’s procedure. Following the similar

two-phase methodologies in [83–85], PSONSGA consists two optimizing phases: the

PSO phase and the NSGA-II phase. The purpose of the PSO phase is to explore the

decision space and preserve the diversity in the solution population. In the NSGA-

II phase, the non-dominated sorting emphasizes the e↵ort to converge the solutions

towards the optimal front. Furthermore, in the NSGA-II phase, an enforced selec-

tion process is introduced to increase the fitness pressure on the population. The
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pseudocode of PSONSGA is presented in Algorithm 4. PSONSGA uses the same

behaviour as in the SMPSO for the first 50% of the run. In the last 50% of the run, a

variant of NSGA-II with an aggressive selection is executed. The aggressive selection

enforces the convergence of solutions and the extension of the solution front. The

population is expected to get closer to the optimal solutions.

4.3.2 Procedures of PSONSGA

PSO procedure

In the first 50% of the PSONSGA iterations, the PSO procedure is employed to

explore the decision space, and to test di↵erent search directions (see rows 3-12). The

position and velocity updating mechanism in PSO, speeds up this searching process.

The diversity in population is preserved before proceeding to the next phases.

NSGA-II procedure

In the last 50% of the run of PSONSGA, the population is expected to be evenly

diversified and relatively close to the Pareto front. The main goal is not to explore

the searching space anymore but to increase the closeness to the optimal solutions

(see rows 17-27) [86]. The NSGA-II procedure, including non-dominated sorting, is

executed to concentrate the solutions towards the true optimal front. Also, we employ

an aggressive selection process as proposed in [86] (see row 24).



49

Algorithm 4 PSONSGA Algorithm

1: Initialize a population of N individuals as “swarm population” S

2: Evaluate the solutions in the S

3: Put non-dominated solutions into an empty “elite archive” A

4: while iteration  50% Maximum iteration do

5: PSO procedure:

6: for each s 2 S do

7: Use constrained binary tournament to select a solution from elite archive

8: Use the solution from last step as the global best particle

9: Compute the speed of s according to the speed equation shown in (4.11)

10: Update the position of s by the speed calculated in the previous step

11: end for

12: Apply the polynomial mutation to 15% of the population

13: Evaluate the solutions in the swarm population

14: Update the elite archive: insert the non-dominated solution from swarm to

archive

15: end while

16: M  Elite solutions in SMPSO’s elite archive A

17: C  M (Use the solutions in M as initial population for NSGA-II)

18: while Iteration  MaxIteration do

19: NSGA-II procedure:

20: D  Empty child population

21: Use constrained binary tournament to select parents in C.

22: while not enough individuals in D do

23: Select parent1 (by tournament selection)

24: Select parent2 (by tournament selection)

25: Getting child1, child2 through Binary Crossover (parent1, parent2)

26: Polynomial Mutation (child1, child2)

27: Evaluate child1 and child2 for their fitness values

28: PSONSGA’s Aggressive Selection Process

29: Insert the child(ren) into D

30: end while

31: Execute the non-dominated-sorting over “preprocessed population” C and

o↵springs population D.

32: Select individuals for the next generation.

33: end while

34: Return the set of feasible non-dominated solutions in population C
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Aggressive Selection Process:

An o↵spring is included in the population only if it is non-dominated or it improves

one objective’s minimum/maximum value so far. The aggressive selection process

enforces the fitness pressure upon the population. Since the diversity is preserved

in the PSO-procedure, a harsh fitness process will not hurt the solution’s spread

character [86].

In conclusion, PSONSGA is expected to show an improvement compared to the

traditional NSGA-II by applying the PSO-based preprocessing and an aggressive

selection process in the second phase. The Pareto front from the PSONSGA could

be expected to have the better diversity and convergence.

4.4 Summary

In this chapter, a detailed description of the weighted sum method, NSGA-II

algorithm and SMPSO algorithm was provided. Motivated by various drawbacks

on existing multi-objective heuristic algorithms, a novel evolutionary algorithm was

proposed. In the next chapter, we present the numerical results of applying these

four multi-objective algorithms on the fog planning problem.



Chapter 5

Results and Analysis

In this chapter, we solve the fog planning problem with the weighted sum method,

NSGA-II, SMPSO, and PSONSGA algorithms. Then, we do a complete analysis of

the obtained results in terms of the solution quality and computation time. More

precisely, the chapter begins with a summary of the steps taken to carry out the

experiments. Then, in Section 5.2, we introduce the experiment setup which consists

of input and the selection of the parameters. In Section 5.2.3, we analyze the planning

results from an instance of the FPP to better understand the characteristics of the

solution sets and delay di↵erences. Then, we evaluate the results from four instances

of 26 di↵erent problem sizes followed by a comparison in terms of quality indicators,

delay gaps and CPU time. Finally, the last section summarizes the chapter.

5.1 Framework for the FPP Experiments

Figure 5.1 summarizes the steps that we used for the fog planning experiments.

First, the FPP instances are generated. Each instance includes the edge-cluster de-

mands, the edge-cluster locations, the potential fog locations as well as the fog and

link types. Second, the FPP instance is solved using the weighted sum method. The

optimal solution points are used as a benchmark in the delay gap comparison. In par-

allel, the proposed encoding scheme is employed to encode the FPP instance for the

EMO. Third, the same FPP instance is solved using three EMOs (NSGA-II, SMPSO

and PSONSGA). Fourth, the solutions returned by di↵erent EMOs are compared

with the solution obtained from the weighted sum method. Fifth, all these solutions

are evaluated by two multi-objective quality indicators: HV and IGD.

51
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Input:	
Edge-Cluster	Information	

Potential	Fog	Location	Information	
Fog	Node	Type	Information	

Link	Type	Information	

Weighted	Sum	 Solution	Encoding		

NSGA-II	 SMPSO	
	

PSONSGA	
	

Solution	Quality	Evaluation	

Pareto	Front	Quality	Evaluation	
• Hypervolume	
• Inverted	Generational	Distance	

		

Benchmark	

Figure 5.1: Steps for the FPP experiments
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5.2 Experiment Setup

5.2.1 Experiment Input

In this thesis, the notion of edge-cluster is used to model the demands. Each edge-

cluster represents a group of co-located clients who would be sending requests to the

fog or cloud. In our experiments, each edge-cluster has its own number of users, and

for each user, the demand will be generated according to the parameters presented

in Table 5.1. This includes the vCPU, memory and bandwidth demands. All these

demands are generated following the uniform distribution. Also, each edge-cluster has

a coordinate (x, y) which is randomly generated in the area. The euclidean distance

between the edge-cluster and the fog is used to calculate the propagation delay.

Table 5.1: Edge cluster demands

For each edge-cluster:

Number of users within the cluster U(10-150)

Coordinates of the edge-cluster (x, y) (within 100 x 100 km

2)

For each user inside an edge-cluster:

Number of vCPU core U(1-4)

Memory U(1-40) GB

Number of packets sent per second U(1-64)

Network access bandwidth U(20-70) Mbps

We define a problem with the following notation: FPP(number of edge-

cluster) (number of candidate locations). For example, “FPP2005” represents a prob-

lem where 20 edge-clusters and 5 candidate locations are uniformly distributed in a

given area. To build fog networks, we assume, without loss of generality, that four

di↵erent fog types and three di↵erent link types are available. Table 5.2 and Table

5.3 present the di↵erent fog and link types respectively.
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Table 5.2: Fog type characteristics

Fog Type # of CPU Memory (GB) NIC (Mbps) Cost ($)

1 90 480 360 67200

2 180 800 1024 120000

3 360 1600 1024 170000

4 720 3200 10240 250000

Table 5.3: Link types characteristics

Link Type Capacity (Mbps) Link cost ($/meter)

1 100 0.25

2 1000 2

3 10000 200

Four instances of 26 di↵erent problem sizes are generated within a 100km⇥100km

area. Table 5.4 shows the 26 di↵erent problem sizes. The first column in the table

represents the problem number. Column 2 shows the problem name using the notation

described previously. Finally, the last two columns present the number of edge-

clusters that need to be served and the number of potential fog locations respectively.
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Table 5.4: Problem sizes

Problem FPP Number of Number of

Index Names Edge-Clusters Potential Locations

1 FPP0505 5 5

2 FPP1005 10 5

3 FPP1505 15 5

4 FPP2005 20 5

5 FPP2505 25 5

6 FPP3005 30 5

7 FPP3505 35 5

8 FPP4005 40 5

9 FPP4505 45 5

10 FPP5005 50 5

11 FPP5505 55 5

12 FPP6005 60 5

13 FPP3010 30 10

14 FPP3510 35 10

15 FPP4010 40 10

16 FPP4510 45 10

17 FPP5010 50 10

18 FPP5510 55 10

19 FPP6010 60 10

20 FPP6510 65 10

21 FPP7010 70 10

22 FPP7510 75 10

23 FPP8010 80 10

24 FPP8510 85 10

25 FPP9010 90 10

26 FPP9510 95 10

5.2.2 Experiment Environment

All the experiments were run on a HP workstation with a Quad core processor,

2.66GHz internal clock and 4GB of memory.

The problem inputs are generated by a program written in JAVA. The source code

of NSGA-II and SMPSO were taken from the JMETAL framework [87]. PSONSGA

was also implemented in JAVA.
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5.2.3 Settings for the Weighted Sum Method

The commercial solver CPLEX 12.07 with default settings is used for the weighted

sum method. We use 11 pairs of weights (with steps of 0.1) to solve each problem

instance. For each weight combination, the time limit for CPLEX is set to one hour.

This means that if CPLEX cannot find the optimal solution for each single weight

setting within one hour, it will return the best solution found so far. Also, due to the

NP-hardness of FPP, even the computer’s memory may be insu�cient. In this case,

CPLEX will return the best solution found before it runs out of memory.

5.2.4 Settings for Evolutionary Algorithms

As mentioned previously, each heuristic algorithm has several tunable parameters,

which can eventually have an impact on the quality of the final solution. Before

running experiments on the generated data sets, NSGA-II and SMPSO’s parameters

were tuned so that best results can be obtained.

The first parameter that needs to be decided is the population size. Reeves [88]

studied on the minimum population size for an e�cient GA search. Their research

showed that for a q-ary alphabets (q represents the possible values for a string posi-

tion) encoding scheme, the minimum population size can be numerically calculated

for specified confidence level. Figure 5.2 illustrates the string length and population

size relationship for a 99.9% confidence level. According to Figure 5.2 and the size

of our FPP problems (15-115 string length, 4-8.87 possible values), we can conclude

that a population size of 100 is an e�cient population size. The search space can be

su�ciently covered within a reasonable computation time.

Figure 5.2: E�cient population size vs string length [88]
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For the NSGA-II algorithm, we compare the volume of the dominated space (HV)

for four di↵erent parameters: mutation distribution index, crossover distribution in-

dex, mutation probability and crossover probability. For tuning purposes, a pop-

ulation size of 100 and 3000 iterations were used. Table 5.5 summarizes the best

parameter settings for the NSGA-II algorithm. Please refer to Appendix A1 for the

complete results.

Table 5.5: NSGA-II parameter selection

NSGA-II Parameter Choice Experiment Group Final Choice

Mutation Distribution Index 2, 4, 6, ..., 20 18

Mutation Probability 0.1, 0.2, ... 1.0 0.1

Crossover Distribution Index 2, 4, 6, ..., 20 18

Crossover Probability 0.1, 0.2, ..., 1.0 0.9

Similarly, for the SMPSO algorithm, we compare the volume of the dominated

space for two parameters: mutation distribution index and mutation probability. For

tuning purpose, a population size of 100 and 3000 iterations were used to test the

di↵erent settings.

The complete list of selected parameters for the SMPSO algorithm is presented

in Table 5.6. Please refer to the Appendix A1 for the complete results of the SMPSO

tuning tests.

Table 5.6: SMPSO parameter selection

SMPSO parameter choice Experiment group Final choice

Mutation Distribution Index 2, 4, 6, ..., 20 14

Mutation Probability 0.1, 0.2, ... 1.0 0.1

5.3 Detailed Example

In this section, a detailed example is presented to explain the FPP planning results.

The first instance of FPP3010 is solved with the weighted sum method, NSGA-II,
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SMPSO and PSONSGA algorithms. The FPP3010 assumes that one needs to plan

and design a brand new fog network to accommodate 30 edge-clusters. To achieve this,

we need to find the optimal number, location and capacity of fog nodes. Figure 5.3

shows the initial planning area with 30 edge-clusters and 10 potential locations that

are uniformly distributed in a 100km ⇥ 100km area. Each edge-cluster has resource

demands which need to be accommodated.

Figure 5.3: Edge-cluster locations and potential locations of fog for FPP3010
(instance-1)

Results from the Weighted Sum Method

The results for problem FPP3010 (instance-1) by using the weighted sum method

are shown in Table 5.7. The first column shows the solution index which makes ref-

erence to the 11 di↵erent weight combinations. The following two columns contain

the decision output for the link type and the fog type at each location. Columns

4 and 5 provide the results of the two objective functions (cost and delay respec-

tively) obtained with the weighted sum method. Finally, column 6 shows the relative

Mixed-Integer Programming (MIP) gap. The MIP gap represents the percentage gap
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between the solution value found by CPLEX and the value of the optimal. For ex-

ample, a 0.05 relative MIP gap means that CPLEX has found a solution that is five

percent from the optimal. Using CPLEX to solve the FPP3010 (instance-1), we can

find 7 solution frontiers (as shown by the 7 di↵erent solutions from Table 5.7, the

duplicated results are grey colored) .

Table 5.7: CPLEX’s result for problem FPP3010

Solution Link output Fog output Cost Delay Gap

number ($) (ms) (%)

1 1 1 1 1 1 1 1 1 1 1 4 1 4 3 4 4 4 4 4 4 2586500.0 283 0.0

2 1 1 1 1 1 1 1 0 1 1 4 1 4 4 4 4 4 0 4 4 2078225.0 283 9.94e-5

3 1 1 1 1 1 1 1 0 1 1 4 1 4 4 4 4 4 0 4 4 2078225.0 283 9.98e-5

4 1 1 1 1 1 1 1 0 1 1 4 1 4 4 4 4 4 0 4 4 2078225.0 283 9.99e-5

5 0 0 1 1 1 0 1 0 1 1 0 0 4 4 4 0 4 0 4 4 1507350.0 300 0.0047

6 0 0 1 1 1 0 0 0 0 1 0 0 4 4 4 0 0 0 0 4 1004900.0 322 9.80e-5

7 0 0 1 0 0 0 0 0 0 1 0 0 4 0 0 0 0 0 0 4 502450.0 356 7.69e-5

8 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 251225.0 384 0.0

9 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 251225.0 384 0.0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 449 0.0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 449 0.0

Noticeably, di↵erent weight settings may converge to the same objective function

values (for example, see solutions 2, 3, 4 from Table 5.7). Figure 5.4 plots the solution

frontier obtained from the weighted sum method.

Results from Evolutionary Algorithms

One fundamental di↵erence between single and multiple objective optimization

is the number of the solutions. Since several solutions can be optimal, each of

these solutions represent a planning and routing scheme which considers a di↵er-

ent cost/performance balance. An example of the 49 planning results (Pareto front)

obtained with NSGA-II is presented in Table 5.8.
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Figure 5.4: Solution frontier of weighted sum (CPLEX)
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Figure 5.7: Solution frontier of PSONSGA

The first column shows the solution number. The following two columns contain

the cost and delay results obtained by the NSGA-II algorithm. Columns 4 and 5

provide, respectively, the decision variables for the link and fog type at each location,

where “0” indicates that no facility is installed, and subsequent numbers correspond

to di↵erent facility types (fog or link). The following two columns show the CPLEX’s

results (cost and delay values). Since CPLEX only produces 7 solution frontiers, the

non-existing solution rows are labelled as “NA”. Finally, the cost gaps and delay gaps
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between solutions from the NSGA-II and corresponding solution from the weighted

sum is provided in the last two columns. The solution frontiers, for FPP3010 by

applying NSGA-II, SMPSO, PSONSGA, are plotted in Figures 5.5, 5.6 and 5.7.

Table 5.8: NSGA-II’s solution set for FPP3010 (instance-1)

NSGA-II Weighted Sum

Solution Cost Delay Variables-link Variables-fog Cost Delay Cost di↵ Delay di↵

num ($) (ms) ($) (ms) (%) (%)

1 121225 427.2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 NA NA

2 171225 410.8 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 NA NA

3 239650 405.0 1 0 1 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 NA NA

4 251225 383.7 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 251225 383.7 0 0.00%

5 319650 383.1 0 0 1 0 0 0 0 0 1 0 0 0 4 0 0 0 0 0 1 0 NA NA

6 372450 377.8 0 0 1 0 0 0 0 0 1 0 0 0 4 0 0 0 0 0 2 0 NA NA

7 388075 377.6 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 4 0 0 0 NA NA

8 422450 372.3 0 0 1 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 4 NA NA

9 440875 372.2 0 0 1 0 1 0 0 0 0 1 0 0 1 0 2 0 0 0 0 4 NA NA

10 490875 366.6 1 0 1 0 0 0 0 0 0 1 1 0 4 0 0 0 0 0 0 3 NA NA

11 502450 356.2 0 0 1 0 0 0 0 0 0 1 0 0 4 0 0 0 0 0 0 4 502450 356.1 0 0.03%

12 570875 355.5 1 0 1 0 0 0 0 0 0 1 1 0 4 0 0 0 0 0 0 4 NA NA

13 623675 350.4 1 0 1 1 0 0 0 0 0 0 2 0 4 4 0 0 0 0 0 0 NA NA

14 673675 350.0 0 0 1 1 0 0 0 0 0 1 0 0 3 4 0 0 0 0 0 4 NA NA

15 692100 350.0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 4 0 2 4 NA NA

16 742100 344.5 1 0 1 1 0 0 0 0 0 1 1 0 4 3 0 0 0 0 0 4 NA NA

17 753675 339.3 0 0 1 1 0 0 0 0 0 1 0 0 4 4 0 0 0 0 0 4 NA NA

18 822100 338.8 1 0 1 1 0 0 0 0 0 1 1 0 4 4 0 0 0 0 0 4 NA NA

19 874900 333.6 1 0 1 1 0 0 0 0 0 1 2 0 4 4 0 0 0 0 0 4 NA NA

20 890525 333.4 1 0 1 1 0 0 1 0 0 1 1 0 4 4 0 0 1 0 0 4 NA NA

21 924900 333.2 0 0 1 1 1 0 0 0 0 1 0 0 4 4 3 0 0 0 0 4 NA NA

22 993325 327.6 0 0 1 1 1 0 1 0 1 0 0 0 3 4 4 0 4 0 1 0 NA NA

23 1004900 322.6 0 0 1 1 1 0 0 0 0 1 0 0 4 4 4 0 0 0 0 4 1004900 322.1 0 0.17%

24 1073325 322.0 0 0 1 1 1 0 1 0 1 0 0 0 4 4 4 0 4 0 1 0 NA NA

25 1141750 321.8 1 1 0 1 0 1 1 0 0 1 1 1 0 4 0 4 4 0 0 4 NA NA

26 1176125 317.1 0 0 1 1 1 0 1 0 1 0 0 0 4 4 4 0 4 0 3 0 NA NA

27 1244550 316.4 1 0 1 1 1 0 1 0 1 0 3 0 1 4 4 0 4 0 4 0 NA NA

28 1256125 311.5 0 0 1 1 0 0 1 0 1 1 0 0 4 4 0 0 4 0 4 4 NA NA

29 1324550 311.3 1 1 0 1 0 1 1 0 0 1 1 4 0 4 0 4 4 0 0 4 NA NA

30 1377350 311.2 1 0 0 1 1 1 1 0 1 0 2 0 0 4 4 4 4 0 4 0 NA NA

31 1392975 311.0 1 1 0 1 1 1 1 0 0 1 1 4 0 4 1 4 4 0 0 4 NA NA

32 1415775 311.0 0 1 0 1 1 1 1 1 0 1 0 4 0 4 3 4 3 1 0 4 NA NA

33 1445775 310.9 1 0 1 1 1 1 1 0 1 0 2 0 1 4 4 4 4 0 4 0 NA NA

34 1495775 306.1 1 0 1 1 1 1 1 0 1 0 3 0 1 4 4 4 4 0 4 0 NA NA

35 1507350 305.6 0 0 1 1 1 0 1 0 1 1 0 0 4 4 4 0 4 0 4 4 1507350 299.9 0 1.87%

36 1575775 301.3 1 0 1 1 1 0 1 0 1 1 1 0 4 4 4 0 4 0 4 4 NA NA

37 1628575 300.6 1 0 1 1 0 1 1 0 1 1 4 0 4 4 0 2 4 0 4 4 NA NA

38 1678575 300.2 1 0 1 1 1 0 1 0 1 1 3 0 4 4 4 0 4 0 4 4 NA NA

39 1697000 300.1 1 1 0 1 1 1 1 0 1 1 4 4 0 4 4 4 1 0 4 2 NA NA

40 1747000 299.9 1 1 0 1 1 1 1 0 1 1 4 4 0 4 4 4 1 0 4 3 NA NA

41 1758575 295.1 1 0 1 1 1 0 1 0 1 1 4 0 4 4 4 0 4 0 4 4 NA NA

42 1827000 294.6 1 0 1 1 1 1 1 0 1 1 4 0 4 4 4 1 4 0 4 4 NA NA

43 1929800 292.0 1 0 1 1 1 1 1 0 1 1 4 0 4 4 3 4 4 0 4 4 NA NA

44 1998225 289.8 1 1 1 1 1 1 1 0 1 1 4 1 4 4 4 4 4 0 4 3 NA NA

45 2009800 289.2 1 0 1 1 1 1 1 0 1 1 4 0 4 4 4 4 4 0 4 4 NA NA

46 2078225 289.0 1 1 1 1 1 1 1 0 1 1 4 1 4 4 4 4 4 0 4 4 2078225 283.2 0 2.03%

47 2181025 284.5 1 0 1 1 1 1 1 1 1 1 4 0 4 3 4 4 4 4 4 4 2148225.151 282.8 -0.015038731 0.60%

48 2249450 284.4 1 1 1 1 1 1 1 1 1 1 4 1 4 3 4 4 4 4 4 4 2586500 282.7 0.149836627 0.61%

49 2261025 284.1 1 0 1 1 1 1 1 1 1 1 4 0 4 4 4 4 4 4 4 4 NA NA

To better understand the results, we select the solution number 23 from Table 5.8

(cost: $1,004,900, delay: 322.1ms) and plot the corresponding topology for this result
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in Figure 5.9. The result for the same expense (i.e. $1,004,900) from Weighted sum,

SMPSO and PSONSGA are also plotted respectively, in Figures 5.8, 5.10 and 5.11.

The detailed examination shows that both NSGA and PSONSGA generate the same

fog network setup (fog node placement, fog node selection, and link selection) as the

exact algorithm (weighted sum). For the same capital expenditure, the results from

Weighted sum, NSGA-II, SMPSO and PSONSGA give 322.1ms, 322.6ms, 323.8ms

and 322.7ms delay respectively. The minor delay di↵erences are due to the mis-

placement of a small number of edge-clusters (see E11 and E12 for example). These

di↵erences can be compensated through user-relocation and load-balancing schemes.

This topic has been thoroughly researched in cloud computing, and mature research

results can be applied on this relocation subproblem.
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Figure 5.8: Planning result of weighted sum (CPLEX),
cost: $1,004,900 delay: 322.1ms

Figure 5.9: Planning result of NSGA-II, cost: $1,004,900
delay: 322.6ms

Figure 5.10: Planning result of SMPSO, cost: $1,004,900
delay: 323.8ms

Figure 5.11: Planning result of PSONSGA, cost:
$1,004,900 delay: 322.7ms
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5.4 Result Analysis

In this section, we present the experiment results to assess the performance of the

algorithms. Four instances of 26 di↵erent problem sizes are solved by the weighted

sum, NSGA-II, SMPSO and PSONSGA algorithms. A population size of 100 with a

number of iterations of 10,000 is used for the three evolutionary algorithms. We use

the same parameter settings as the ones described in the last section.

5.4.1 HV Indicator Comparison

Since the output of each MO algorithm is a non-dominated solution set, we em-

ploy the HV indicator [29] to evaluate and compare the solution quality between the

weighted sum algorithm and the three evolutionary algorithms. Table 5.9 shows the

HV results for the first instance of the 26 problems. The first column shows the

problem number which corresponds to the first column of Table 5.4. The following

two columns contain the HV results and the CPU times obtained by solving FPP

with the weighted sum method. Column 4 shows the gap (expressed as a percentage)

between the solution HV value obtained with the weighted sum, and the best HV

value among the four algorithms. The following three columns show the HV value,

the corresponding CPU time as well as the gap for the NSGA-II algorithm. The next

three columns are the results for the SMPSO algorithm. Finally, similar information

for the PSONSGA algorithm is provided in the last three columns. The results for

the other three instances are presented in Appendix B1, B2 and B3.
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Table 5.9: HV value and CPU time for instance-1

Weighted Sum NSGA-II SMPSO PSONSGA

Problem HV CPU Gap HV CPU Gap HV CPU Gap HV CPU Gap

# (s) % (s) % (s) % (s) %

1 0.488 1 14.26 0.558 3 0.00 0.558 1 0.00 0.558 1 0.00

2 0.461 1 27.25 0.582 3 0.69 0.575 1 1.91 0.586 2 0.00

3 0.545 1 15.86 0.632 3 0.00 0.623 1 1.44 0.610 2 3.61

4 0.506 7 20.52 0.567 3 7.58 0.591 1 3.21 0.610 2 0.00

5 0.519 8 19.76 0.531 3 17.14 0.614 1 1.30 0.622 2 0.00

6 0.427 10 36.14 0.545 3 6.61 0.554 2 4.87 0.581 4 0.00

7 0.508 9 20.20 0.522 3 17.05 0.578 2 5.71 0.611 4 0.00

8 0.498 46 20.32 0.486 4 23.25 0.566 2 5.83 0.599 5 0.00

9 0.526 45 21.77 0.507 5 26.23 0.640 2 0.00 0.613 7 4.40

10 0.404 41 36.21 0.338 5 62.72 0.510 3 7.84 0.550 7 0.00

11 0.483 50 20.83 0.438 10 33.11 0.549 3 6.19 0.583 12 0.00

12 0.506 62 18.55 0.459 18 30.72 0.548 6 9.49 0.600 16 0.00

13 0.552 698 20.23 0.544 184 22.06 0.639 286 3.91 0.664 251 0.00

14 0.509 854 25.06 0.451 1747 41.02 0.598 301 6.35 0.636 343 0.00

15 0.548 2777 23.25 0.506 1729 33.60 0.676 315 0.00 0.653 339 3.52

16 0.484 7390 29.89 0.425 1757 48.00 0.592 320 6.25 0.629 1324 0.00

17 0.523 4478 22.72 0.467 1891 37.47 0.601 333 6.82 0.642 2538 0.00

18 0.548 8204 16.00 0.432 2055 47.22 0.595 341 6.89 0.636 2724 0.00

19 0.461 9392 28.27 0.340 2145 73.82 0.551 554 7.26 0.591 2833 0.00

20 0.547 20921 17.95 0.411 2175 56.93 0.611 659 5.56 0.645 4858 0.00

21 0.476 22022 27.36 0.362 2078 67.40 0.533 954 13.70 0.606 4962 0.00

22 0.470 11147 27.35 0.300 2126 99.67 0.561 1236 6.77 0.599 3805 0.00

23 0.321 19403 74.07 0.327 2952 70.95 0.559 1444 0.00 0.535 4424 4.49

24 0.356 19476 61.55 0.271 3621 112.18 0.515 1314 11.65 0.575 4172 0.00

25 0.487 25422 18.29 0.295 3323 95.25 0.542 1489 6.27 0.576 4847 0.00

26 0.452 19510 27.86 0.249 5353 132.13 0.518 1639 11.58 0.578 5464 0.00

Since the HV indicator examines both the convergence and diversity properties of

a solution set, in these perspectives, PSONSGA algorithm displays its superiority in

finding a good quality solution within reasonable computation time. In fact, for all

four problem instances (a total of 104 di↵erent problems), PSONSGA provides the

best HV value for 95 problems (91.3%). The NSGA-II and SMPSO each provides
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the highest HV value for 19 di↵erent problems (18.2%). The weighted sum approach

only provides the best HV value for 2 problems (1.92%).

Figure 5.12 provides a comparison of the HV values amongst the weighted sum,

NSGA-II, SMPSO and PSONSGA algorithms for the first instance.

Figure 5.12: HV indicator comparison (instance-1)

As shown in Figure 5.12, the PSONSGA algorithm achieves the best balance

between convergence and diversity amongst the three evolutionary algorithms. The

weighted sum approach produces worse HV values, because each individual branch

and bound search can only produce one single solution. We can also notice that for

large-scale problems, NSGA-II’s HV values are worse than all three other algorithms.

This is due to the larger search space in large-scale problems and the concentrated

e↵ect of the non-dominated sorting in the NSGA-II algorithm. Figure 5.13 further

presents a complete HV comparison over the four instance sets with a 95% confidence

interval. As shown in Figure 5.13, we can reach the same conclusion that PSONSGA

outperforms the weighted sum method and the two existing EMO algorithms in HV

tests.



67

Figure 5.13: HV indicator comparison (over four instance sets)

5.4.2 IGD Indicator Comparison

In this section, we examine the solution quality of the weighted sum, NSGA-II,

SMPSO and PSONSGA algorithms by using the IGD quality indicator. As discussed

in Chapter 2, the IGD indicator evaluates the quality of a solution set using a reference

set. It generates the IGD value through calculating the average euclidean distance

between the solution sets and the reference sets. In our evaluation, we use the best

non-dominated solutions returned by all three methods as the reference set. The IGD

values for the four algorithms are presented in Table 5.10. The first column shows the

problem number. Columns 2, 3, 4 and 5 display respectively, the average IGD value

for the weighted sum, NSGA-II, SMPSO and PSONSGA. As shown in Table 5.10,

PSONSGA displays its superiority over the weighted sum method and the two existing

evolutionary algorithms in this evaluation. The average IGD values for PSONSGA’s

solution achieves the best IGD in 25 of the 26 problems. This improvement over

NSGA-II and SMPSO can be explained by the information exchange between the

PSO and GA phases in the PSONSGA procedure. This two-phase procedure has

been proven to reach better Pareto front results as shown by the IGD indicator

comparison.
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Table 5.10: IGD indicator comparison (average over four instances)

Problem # Weighted sum NSGA-II SMPSO PSONSGA

1 2.16E � 01 1.01E � 02 2.01E � 03 1.43E � 03

2 1.31E � 01 9.22E � 03 2.09E � 03 1.24E � 03

3 9.81E � 02 4.95E � 03 1.96E � 03 1.11E � 03

4 4.11E � 02 1.24E � 02 2.46E � 03 1.97E � 03

5 3.57E � 02 1.30E � 02 3.16E � 03 3.02E � 03

6 3.57E � 02 1.32E � 02 3.55E � 03 2.49E � 03

7 6.12E � 02 1.17E � 02 3.73E � 03 2.81E � 03

8 9.72E � 02 1.99E � 02 3.68E � 03 2.44E � 03

9 9.83E � 02 1.79E � 02 4.44E � 03 3.28E � 03

10 1.13E � 01 1.73E � 02 5.32E � 03 3.83E � 03

11 1.34E � 01 2.06E � 02 4.98E � 03 3.52E � 03

12 1.40E � 01 2.08E � 02 5.54E � 03 4.33E � 03

13 4.47E � 02 1.57E � 02 2.37E � 03 1.48E � 03

14 5.21E � 02 1.78E � 02 2.59E � 03 1.69E � 03

15 7.05E � 02 1.68E � 02 2.40E � 03 1.69E � 03

16 1.24E � 01 1.70E � 02 3.11E � 03 2.05E � 03

17 1.18E � 01 1.51E � 02 3.53E � 03 2.53E � 03

18 1.82E � 01 1.70E � 02 3.50E � 03 2.33E � 03

19 1.70E � 01 1.52E � 02 3.32E � 03 2.59E � 03

20 3.03E � 01 1.76E � 02 3.43E � 03 2.25E � 03

21 2.62E � 01 1.64E � 02 3.86E � 03 3.00E � 03

22 3.03E � 01 1.92E � 02 3.61E � 03 2.03E � 03

23 3.48E � 01 1.53E � 02 3.66E � 03 2.78E � 03

24 4.03E � 01 1.97E � 02 3.34E � 03 2.17E � 03

25 3.68E � 01 1.65E � 02 3.66E � 03 3.97E � 03

26 5.32E � 01 1.93E � 02 4.43E � 03 4.27E � 03

5.4.3 Delay Gap Comparison

Since we solved the weighted sum formulation with CPLEX solver, each solution

point from the CPLEX solver is an optimal solution. In other words, under the

same expense condition, the tra�c delay produced by the weighted sum and CPLEX

can achieve the optimum. Using CPLEX solutions as the reference, we calculate the

average delay gaps between CPLEX and the evolutionary algorithms. The average
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delay gaps were computed only if the same cost exists in the weighted sum solution

sets and CPLEX has found the optimal solutions (the relative MIP equals to zero).

Figure 5.14 presents the comparison in terms of delay gaps between the three evolu-

tionary algorithms for problems of first instance. As shown in Figure 5.14, NSGA-II

comes in the first place in terms of the delay gaps over 26 problems with an average

gap of 0.3% . PSONSGA gives the second best performance with less than or equal to

the delay in NSGA-II in 12 of 26 problems with an average gap of 0.4%. An intensive

statistical analysis for delay gaps is presented in Table 5.11

Figure 5.14: Delay gaps (instance-1)

Table 5.11 shows the statistical results over the four instance sets. The first three

columns represent the minimum, the maximum, and the average delay gaps. The

following two columns are the standard deviation and the 95% confidence interval for

the average delay gaps. As shown in Table 5.11, without considering the diversity and

distribution in solution sets, NSGA-II gives the best delay gaps to optimal solutions.

The reason behind this is the non-dominated sorting in NSGA-II concentrates the

solution sets towards the optimal front. However, this sorting process sacrifices the

solution diversity for a better convergence quality. This is the same reason why the

solutions produced by the NSGA-II algorithm provide worse HV values. PSONSGA

achieves the second best among the three evolutionary algorithms.
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Table 5.11: Delay gap comparison (over four instance sets)

Algorithms Min.gap Max.gap Ave.gap Std.dev 95% C.I.

(%) (%) (%) (%) (%)

NSGA-II 0.00 7.80 0.30 0.81 0.30±0.15

SMPSO 0.00 8.50 0.60 1.19 0.60±0.22

PSONSGA 0.00 7.80 0.50 1.12 0.50±0.21

5.4.4 CPU Time Comparison

Figure 5.15 provides the comparison in terms of the CPU time between the

weighted sum method and the three evolutionary algorithms for the first instance

of problems. Appendixes C1, C2 and C3 contain the corresponding information for

the second, third and fourth instances.

Figure 5.15: CPU time comparison (instance-1)

As shown in Figure 5.15, all three evolutionary algorithms can provide good qual-

ity Pareto frontier in a reasonable amount of time. For small-scale problems (problems

1 to 12), the three evolutionary algorithms can finish the optimization within 30 sec-

onds. For large-scale problems, evolutionary algorithms’ solution times are still within

a reasonable range. For example, to solve problem 26, NSGA-II, SMPSO, PSONSGA,

each respectively took 5,303 seconds, 1,639 seconds and 5,464 seconds. In compari-

son, the weighted sum method using the Cplex solver takes 19,510 seconds, which is
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approximately 3.5 times longer than PSONSGA. We also notice that, although fast

for small size problems, CPLEX’s CPU time is almost increasing exponentially with

respect to the problem size. This corresponds with the fact that the fog planning

problem is NP-hard as described in Chapter 3.

Figure 5.16 further presents a complete CPU time comparison over the four in-

stance sets with a 95% confidence interval. As shown in Figure 5.16, we can reach the

same conclusion that all three evolutionary algorithms can generate close-to-optimal

solutions in a reasonable amount of time.

Figure 5.16: CPU time comparison (over four instance sets)

From the delay gap comparison shown in Table 5.11 and the CPU time comparison

in Figure 5.16, we can conclude that the evolutionary algorithms are able to use less

CPU time to generate close to optimal solutions. At the same time, PSONSGA

attains a good balances between the solution convergence and diversity, compared to

the two existing algorithms (NSGA-II and SMPSO).

5.5 Summary

To evaluate the FPP model, four instance sets of 26 di↵erent problem sizes were

solved. The results from the weighted sum, NSGA-II, SMPSO and PSONSGA are
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compared in terms of the HV indicator, IGD indicator and delay gaps. From the HV

and IGD indicator perspectives, PSONSGA achieves the best HV and IGD values for

most of the problem sizes. In contrast, NSGA-II was able to return good solutions in

terms of the delay objective value without considering the diversity and coverage of

solution frontiers.

The main idea behind approximation algorithms is to find an acceptable tradeo↵

between the solution quality and the computation time [89]. During the experiment

process, we observe that, NSGA-II’s non-dominated sorting restricts the solutions

from exploring new search space. With the increase of the size of the population, the

solution diversity can be improved. However, this obviously increases the computation

time, because more o↵springs need to be generated, evaluated and sorted in each

iteration. In contrast, based on the same initial population size, SMPSO displays

good coverage of the whole Pareto frontier. However, after certain iterations, SMPSO

may still search a di↵erent solution space instead of converging the solution towards

the true optimal front. With the increase of the total number of iterations, the

solution quality increases. However, to achieve a small amount of solution quality

improvement, the total number of iterations needs to be significantly increased, which

results in a significant growth of the computation time.

In PSONSGA, the improvement of the solution quality can be explained by the

cooperative optimizing between the PSO phase and the GA phase. Compared to the

two existing evolutionary algorithms, the proposed algorithm makes use of the ad-

vantages of PSO and GA. The PSO phase explores the decision space and preserves

the diversity in the solution population. Then, the GA phase emphasizes the conver-

gence of the population towards the optimal front. This two-phase optimization can

produce better solution frontiers. More importantly, this improvement of the solution

quality does not require a substantial increase of the computation time. Therefore,

we can conclude that the proposed PSONSGA algorithm is a promising planning tool

to design fog networks.

In the real world of fog planning, the number of edge-clusters can be extremely

large, and the network topology, conditions and restrictions will be more complicated.

Therefore, using the weighed sum method and CPLEX can be time-consuming. In

fact, the proposed algorithm can be more appropriate in this situation. PSONSGA

is recommended for solving the fog planning problem as it achieves the best balance

between the solution diversity, convergence and computation time.
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Conclusion and Future Work

6.1 Conclusion

Although, cloud computing and fog computing share the same virtualization, stor-

age, and networking techniques, the geo-distributed deployment of fog nodes makes

the planning fog networks a complex task. We have observed that, there has been lit-

tle work on the planning aspects of fog networks, and that the weighted sum method

has various issues such as the exponential time complexity and a smaller number of

solution points.

In order to address these issues, this thesis studies the planning and design of fog

computing networks by modelling the FPP as a multi-objective combinatorial model.

This model combines the fog placement, the fog dimensioning, and the edge-cluster

routing into a joint optimization problem. The goal of this model is to minimize the

capital expenditure and the network delay in two separated objective functions in an

e↵ort to attain the Pareto optimality. Two existing heuristic multi-objective algo-

rithms (namely NSGA-II and SMPSO) were applied to obtain the optimal solution

set. Between these two algorithms, NSGA-II achieves the best performance in terms

of the closeness to optimal solutions, while SMPSO performs the best in preserving

the diversity in Pareto frontiers. However, both of these algorithms show some dis-

advantages such as the unevenly diverse results and the convergence gap towards the

optimal front. To overcome these limitations, we proposed a new heuristic algorithm,

called PSONSGA which combines the convergence and the diversity quality from

NSGA-II and SMPSO.

Experimental results show that the PSONSGA outperforms both NSGA-II and

SMPSO. Specifically, the hypervolume comparison shows that NSGA-II and SMPSO

73
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give the best HV values, in 19 of 104 di↵erent FPPs, while PSONSGA gives the best

HV values in 95 of 104 FPPs. Also, the solution comparison shows that PSONSGA

algorithm has 95 percent confidence that the mean delay gap is within the interval of

[0.29%, 0.71%] . The experimental results also confirm that evolutionary algorithms

can be notably e�cient in execution time compared to the weighted sum approach.

6.2 Thesis Contribution

The contribution of this thesis is threefold.

• First, this thesis formulates the FPP as a multi-objective model. The proposed

model considers the following objectives: minimizing the total network delay

and minimizing the capital expenditure.

• Second, since the exact model has various drawbacks in solving this multi-

objective problem, this thesis adopts the heuristic algorithms to solve the plan-

ning problem. The EMO algorithms, as the heuristic algorithms, are employed

to solve the FPP.

• Third, this thesis proposes a novel EMO algorithm (PSONSGA) which outper-

forms two existing EMOs in the multi-objective quality indicator tests (HV and

IGD). Also, the computation time of the PSONSGA is still within a reasonable

range.

6.3 Future Work

6.3.1 Employing EMO on Larger Size Networks

Cisco estimates that there will be 50 billion connected devices by 2020 [2]. The

proliferation of mobile devices indicates that fog networks will contain a large number

of edge-clusters. Planning and designing a fog computing network with hundreds or

even thousands of edge-clusters can be an extremely complicated task. In this context,

EMO techniques are considered as a promising approach to complete this task due

to its low time-complexity, and convergence e�ciency. When the network scales up

to hundreds of nodes, the genetic algorithm and the particle swarm algorithm need
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to be tuned up to fit this change. It is necessary to propose new searching schemes

and fitness functions to obtain the optimal Pareto front results in large-scale FPPs.

6.3.2 Development of Dynamic Fog Planning Model

The cloud and fog infrastructures are typically subject to dynamically changing

network demands. It is di�cult to make a good fog planning decision that is optimized

for all facility sites across all the time periods. The proposed fog network model can

be extended to the dynamic fog planning model, in which each fog site can hibernate,

wakeup, and relocate according to di↵erent network environment and demands. To

solve this dynamic fog planning model, the EMO algorithm, especially the PSONSGA

algorithm we proposed, can be employed. To be specific, a network flow model could

be used to track each fog’s hibernation, wakeup and relocate activity across di↵erent

time slots. In this way, each fog’s installation, power down and relocation activities

become vertices in the network flow. Thereafter, this network flow can be transferred

to the same kind of the multi-objective problem, and solved by using the EMO.

6.3.3 Fog Tra�c Management with Software-Defined Net-

working (SDN)

The experiment results in Chapter 5 show that EMOs’ solutions give 1-5% worse

delay objective values compared to the optimal solutions due to the di�culties to

achieve the global optimum user-allocation. However, the integrated nature of the

problem does not imply that we cannot separate the fog placement problem into two

subproblems. For instance, it is relatively easy to reassign requests to di↵erent facil-

ities. The emergent SDN technique is perfect for this job. The SDN controller sepa-

rates the control plane from the forwarding plane and provides abstraction between

the controllers and the network elements. Since the controllers can dynamically man-

age the tra�c load through the north-bound interface, online tra�c management and

optimization can be executed in the SDN controller. The cloud service provider can

monitor and optimize the tra�c in the fog network through workload re-balancing

services executed in the SDN controller. The centralized controlling in SDN com-

bined with the e�cient multi-objective optimization algorithms such as the EMOs,

is a promising research direction.
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Appendix A

The Parameter Setting Experiments

A.1 Parameter Tests for Evolutionary Algorithms

To determine the best parameter settings for the fog planning problems, we use

the HV quality indicator to evaluate the performance between di↵erent settings. For

the purpose of parameter tuning, we choose the population size of 100 according

to the research in [88] as described in Section 5.2.4. To determine the number of

iterations, we apply the same experimental method in [9]. The basic idea of this

method is to test the number of iterations for multi-objective algorithms to reach the

98% of the HV of the CPLEX’s Pareto front. We can observe that all three EMOs

can reach the 98% HV of CPLEX within 3000 iterations. Therefore, in parameter

tuning tests, a population size of 100 with a number of iterations of 3000 is used for

di↵erent settings. For each parameter, 10 di↵erent experiments are undertaken. The

statistical result is drawn from 5 independent runs for each parameter setting. Three

problem instances: FPP3010, FPP6010, FPP9010 are chosen in an attempt to cover

the small size, medium size and large size of the FPP. The HV mean x̄ and standard

deviation � results are shown in the corresponding Table.

For NSGA-II algorithm, we compare the volume of the dominated space (HV) for

four parameters: mutation distribution index, crossover distribution index, mutation

probability and crossover probability.

Mutation Distribution Index (MDI): An index value governs the proximity

of the mutated solution to the parent solution. A large index value gives a higher

probability for producing the “near-parent” solutions. In our experiment, the value of

MDI takes integer between [2-20] with step size 2. As shown in Table A.1, experiment

value 18 shows overall best performance.
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Crossover Distribution Index (CDI): An index value governs the proximity

of the mutated o↵springs to their parents. In our experiment, the value of CDI takes

integer between [2-20] with step size 2. As shown in Table A.2, experiment value 18

shows overall best performance.

Mutation Probability (MP): The probability to randomly change each decision

variable. In our experiment, the value of MP takes value between [0,1] with step size

0.1. As shown in Table A.3, experiment value 0.1 shows overall best performance.

Crossover Probability (CP): The probability of producing o↵spring from

crossover parents solutions. In our experiment, the value of CP takes value between

[0,1] with step size 0.1. As shown in Table A.4, experiment value 0.9 shows overall

best performance.

Similar to NSGA-II parameter tests, for SMPSO algorithm, a population size

of 100 with a number of iterations of 3000 is used for di↵erent settings. For each

parameter, 10 di↵erent experiments are undertaken. The statistical result is drawn

from 5 independent runs for each parameter setting. The HV mean x̄ and standard

deviation � results are shown in the corresponding Table. We compare the volume

of dominated space for two parameters: mutation distribution index and mutation

probability

Mutation Distribution Index (MDI): Similar to the NSGA-II, mutation dis-

tribution index governs the proximity of the mutated solution to the parent solution.

A large index value gives a higher probability for producing the “near-parent” solu-

tions. In our experiment, the value of MDI takes integer between [2-20] with step size

2. As shown in Table A.5, experiment value 14 shows the overall best performance.

Mutation Probability (MP): The probability to randomly change each decision

variable. In our experiment, the value of MP takes value between [0,1] with step size

0.1. As shown in Table A.6, experiment value 0.1 shows overall best performance.
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Appendix B

Experiment Results

B.1 HV Value and CPU Time for Instance 2

In this appendix, we present the results for the remaining three instances. Similar

to the table presented in Section 5.4.1, the first columns of the tables below represent

the problem number. The following two columns contain the HV results and the CPU

times obtained from the weighted sum method. Column 4 shows the gap (expressed

as a percentage) between the solution HV value obtained with the weighted sum, and

the best HV value among the four algorithms. The following three columns show the

HV value, the corresponding CPU time as well as the gap for the NSGA-II algorithm.

The next three columns are the results for the SMPSO algorithm. Finally, similar

information for the PSONSGA algorithm is provided in the last three columns.
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Weighted Sum NSGA-II SMPSO PSONSGA

Problem HV CPU Gap HV CPU Gap HV CPU Gap HV CPU Gap

# (s) % (s) % (s) % (s) %

1 0.627 1 0.00 0.507 1 23.64 0.507 1 23.64 0.507 2 23.64

2 0.550 2 4.34 0.574 2 0.00 0.574 1 0.00 0.574 2 0.00

3 0.620 1 1.85 0.613 1 3.10 0.614 1 2.93 0.632 2 0.00

4 0.478 10 25.85 0.586 2 2.56 0.585 1 2.74 0.601 2 0.00

5 0.510 14 18.69 0.578 3 4.67 0.596 1 1.51 0.605 3 0.00

6 0.469 10 25.52 0.533 2 10.51 0.589 1 0.00 0.589 4 0.00

7 0.476 21 21.62 0.502 3 15.34 0.579 1 0.00 0.579 5 0.00

8 0.467 81 26.31 0.460 2 28.26 0.590 1 0.00 0.590 5 0.00

9 0.456 78 19.64 0.453 3 20.31 0.530 2 2.83 0.545 8 0.00

10 0.504 57 18.17 0.434 3 37.10 0.595 3 0.00 0.595 8 0.00

11 0.388 177 39.73 0.384 10 41.15 0.542 2 0.00 0.542 16 0.00

12 0.489 66 21.71 0.432 11 37.73 0.563 5 5.68 0.595 18 0.00

13 0.596 1388 14.31 0.496 171 37.30 0.675 169 0.89 0.681 233 0.00

14 0.487 1369 30.29 0.508 1468 25.00 0.615 211 3.25 0.635 290 0.00

15 0.504 4463 31.48 0.524 1418 26.53 0.636 214 4.25 0.663 345 0.00

16 0.527 7317 25.51 0.514 1160 28.79 0.632 307 4.75 0.662 912 0.00

17 0.531 6653 22.74 0.564 1683 15.60 0.624 186 4.49 0.652 2475 0.00

18 0.563 22163 14.36 0.644 1665 0.00 0.611 266 5.40 0.644 2904 0.00

19 0.510 28054 29.69 0.630 1759 5.08 0.633 382 4.58 0.662 2394 0.00

20 0.529 20389 17.70 0.623 1827 0.00 0.606 653 2.81 0.623 5169 0.00

21 0.508 29579 35.33 0.688 1454 0.00 0.668 916 2.99 0.688 4933 0.00

22 0.529 13543 27.44 0.552 1105 22.10 0.655 1236 2.90 0.674 5273 0.00

23 0.488 16865 33.70 0.532 2746 22.56 0.626 1444 4.15 0.652 3450 0.00

24 0.461 25971 47.02 0.609 2970 11.33 0.651 828 4.15 0.678 4318 0.00

25 0.507 26141 21.51 0.505 2758 21.98 0.591 1177 4.23 0.616 5496 0.00

26 0.485 26926 37.47 0.538 3051 23.98 0.639 1033 4.38 0.667 4437 0.00
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B.2 HV Value and CPU Time for Instance 3

Weighted Sum NSGA-II SMPSO PSONSGA

Problem HV CPU Gap HV CPU Gap HV CPU Gap HV CPU Gap

# (s) % (s) % (s) % (s) %

1 0.668 1 0.46 0.553 2 21.34 0.631 1 6.34 0.671 2 0.00

2 0.690 1 0.00 0.488 3 41.46 0.598 1 15.44 0.637 1 8.37

3 0.509 1 23.72 0.630 3 0.00 0.619 1 1.78 0.630 2 0.00

4 0.510 6 26.73 0.636 3 1.57 0.627 1 3.03 0.646 2 0.00

5 0.490 6 28.57 0.613 3 2.77 0.630 1 0.00 0.630 2 0.00

6 0.496 11 22.75 0.469 3 29.85 0.609 2 0.00 0.609 4 0.00

7 0.510 10 30.70 0.594 4 12.29 0.647 2 3.09 0.667 5 0.00

8 0.389 40 72.43 0.508 4 31.89 0.570 2 17.54 0.670 6 0.00

9 0.470 37 40.43 0.543 5 21.55 0.660 2 0.00 0.660 8 0.00

10 0.498 37 26.62 0.474 5 33.12 0.605 3 4.30 0.631 6 0.00

11 0.477 41 43.71 0.533 11 28.52 0.660 3 3.79 0.685 11 0.00

12 0.415 56 45.35 0.510 18 18.24 0.574 5 5.05 0.603 18 0.00

13 0.516 544 24.60 0.446 156 44.17 0.626 314 2.72 0.643 246 0.00

14 0.536 1050 17.08 0.628 1572 0.00 0.601 322 4.49 0.608 329 3.29

15 0.510 3082 22.63 0.514 1781 21.60 0.625 277 0.00 0.625 352 0.00

16 0.496 6207 29.64 0.438 1775 46.80 0.623 358 3.21 0.643 1178 0.00

17 0.535 4344 25.35 0.671 1891 0.00 0.651 349 3.07 0.650 2615 3.23

18 0.461 6399 34.77 0.508 1870 22.24 0.603 324 2.99 0.621 2370 0.00

19 0.534 7513 24.81 0.667 2166 0.00 0.646 632 3.25 0.667 2889 0.00

20 0.485 19875 31.09 0.636 2284 0.00 0.606 719 4.95 0.636 4129 0.00

21 0.543 24004 17.76 0.622 2348 2.89 0.609 982 5.09 0.640 5211 0.00

22 0.523 19875 25.77 0.638 2296 3.13 0.637 1137 3.30 0.658 4299 0.00

23 0.514 19209 31.58 0.676 3336 0.00 0.642 1574 5.30 0.676 4778 0.00

24 0.472 18113 36.06 0.440 3549 45.91 0.625 1498 2.72 0.642 3629 0.00

25 0.514 27456 29.20 0.534 3555 24.34 0.637 1623 4.24 0.664 4507 0.00

26 0.432 25411 54.52 0.554 4711 20.40 0.639 1508 4.38 0.667 5410 0.00
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B.3 HV Value and CPU Time for Instance 4

Weighted Sum NSGA-II SMPSO PSONSGA

Problem HV CPU Gap HV CPU Gap HV CPU Gap HV CPU Gap

# (s) % (s) % (s) % (s) %

1 0.522 1 30.66 0.682 3 0.00 0.653 1 4.44 0.682 1 0.00

2 0.537 1 28.57 0.691 3 0.00 0.656 1 5.34 0.691 1 0.00

3 0.567 1 7.87 0.612 3 0.00 0.608 1 0.66 0.612 2 0.00

4 0.520 8 25.31 0.651 3 0.00 0.651 1 0.00 0.651 2 0.00

5 0.487 8 40.46 0.596 3 14.77 0.684 1 0.00 0.684 3 0.00

6 0.500 8 32.37 0.515 3 28.54 0.662 2 0.00 0.662 5 0.00

7 0.485 9 36.78 0.562 3 17.97 0.663 2 0.00 0.663 4 0.00

8 0.488 48 25.13 0.490 4 24.69 0.579 2 5.53 0.611 5 0.00

9 0.396 54 64.24 0.515 5 26.41 0.604 2 7.78 0.651 7 0.00

10 0.480 31 29.38 0.507 5 22.49 0.570 3 8.95 0.621 7 0.00

11 0.403 61 57.13 0.476 8 33.19 0.594 3 6.73 0.634 9 0.00

12 0.488 62 39.17 0.542 20 25.28 0.639 6 6.26 0.679 15 0.00

13 0.607 836 6.89 0.537 145 20.86 0.628 234 3.34 0.649 199 0.00

14 0.543 851 20.93 0.493 1779 33.27 0.628 334 4.62 0.657 262 0.00

15 0.545 3407 19.56 0.453 1613 43.71 0.633 358 2.84 0.651 291 0.00

16 0.515 6591 24.36 0.557 1490 14.90 0.610 264 4.92 0.640 1284 0.00

17 0.520 4349 28.92 0.671 2116 0.00 0.646 268 3.87 0.671 2663 0.00

18 0.497 8557 28.79 0.640 1583 0.00 0.640 263 0.00 0.614 2936 4.23

19 0.515 10547 26.02 0.649 2364 0.00 0.619 591 4.85 0.649 2252 0.00

20 0.514 18369 30.92 0.654 2456 2.91 0.672 514 0.15 0.673 4460 0.00

21 0.403 27241 65.84 0.524 2271 27.67 0.648 1014 3.24 0.669 3786 0.00

22 0.434 8572 48.33 0.540 2629 19.07 0.624 1116 3.04 0.643 4079 0.00

23 0.423 21111 45.25 0.509 2501 20.63 0.592 1704 3.72 0.614 4574 0.00

24 0.497 23001 30.13 0.540 3136 19.81 0.630 1284 2.70 0.647 3225 0.00

25 0.506 20109 34.84 0.568 2874 20.07 0.658 1655 3.65 0.682 5850 0.00

26 0.525 15647 25.00 0.529 5851 24.01 0.633 1364 3.63 0.656 5792 0.00



Appendix C

CPU Time Results

In this appendix, we present the comparison in terms of the CPU time between

the weighted sum method and the three evolutionary algorithms for the second, third

and fourth instance of the problems. As can be seen from the three figures, the CPU

time of weighted sum method increases exponentially with respect to the problem

size. In comparison, all three evolutionary algorithms can output high-quality Pareto

front solutions within reasonable amount of CPU time.

C.1 CPU Time for Instance 2

Figure C.1: CPU time comparison (instance-2)
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C.2 CPU Time for Instance 3

Figure C.2: CPU time comparison (instance-3)

C.3 CPU Time for Instance 4

Figure C.3: CPU time comparison (instance-4)


